Arbeitshilfe

Stahlherstellung und Werkstoffe für den Stahlbau

Was ist Stahl?

Stahl ist eine Legierung aus Eisen, Kohlenstoff, Eisenbegleiter und Legierungselementen, die ohne Nachbehandlung schmiedbar ist und einen Kohlenstoffgehalt (C) von maximal 2 % aufweist. Gusseisen hat einen höheren Kohlenstoffgehalt (> 2%) und ist daher nicht wie Stahl verformbar; im Bauwesen wird es nur in Spezialbereichen eingesetzt.

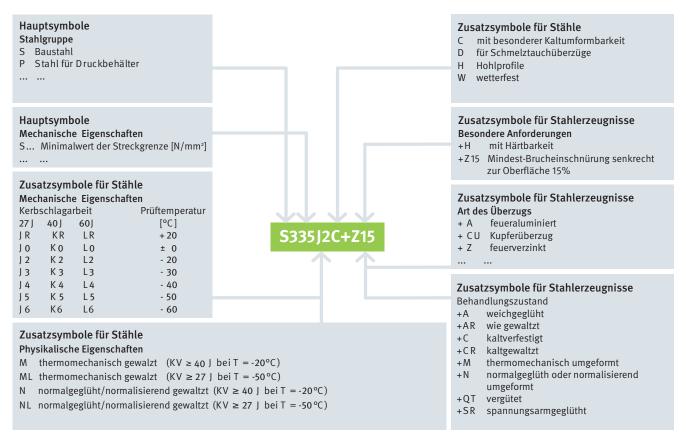
Baustähle haben im Allgemeinen einen Kohlenstoffgehalt von weniger als 0,25 %. Neben Kohlenstoff enthält Stahl Begleitstoffe, z. B. Phosphor, Schwefel, Stickstoff und Legierungselemente, u. a. Aluminium, Chrom, Mangan, Nickel. Durch die chemische Zusammensetzung und durch Wärmebehandlungen können die Werkstoffeigenschaften des Stahls gezielt beeinflusst werden.

So gibt es viele Stahlsorten:

- unlegierte Baustähle
- hochfeste Feinkornbaustähle
- wetterbeständige Baustähle
- Betonstähle
- Spannstähle
- nichtrostende Edelstähle
- warmfeste Stähle und andere.

Klassifizierung der Baustähle

Die Bezeichnung und damit Klassifizierung der Stähle erfolgt nach ihren wesentlichen Eigenschaften, wie Festigkeit, Zähigkeit und speziellen Eigenschaften, wie z. B. Kaltumformbarkeit etc. In **Bild 1** sind die wichtigsten Bestandteile des Bezeichnungssys-


tems von Stählen nach DIN EN 10027-1 dargestellt. Die im Stahlhochbau am häufigsten verwendeten Stähle sind die der Stahlsorte S235 und S355.

Die mechanischen Eigenschaften und die chemische Zusammensetzung der Stähle sind in den Produktnormen spezifiziert. Im Bauwesen werden hauptsächlich unlegierte Baustähle und Feinkornbaustähle nach DIN EN 10025, warmgefertigte Hohlprofile nach DIN EN 10210 sowie kaltgefertigte und geschweißte Hohlprofile nach DIN EN 10219 eingesetzt. **Tabelle 1** gibt einen Überblick über die nach DIN EN 1993-1-1 einsetzbaren Stähle.

Belastbarkeit von Stahl

Belastungen rufen an Bauteilen Formänderungen hervor. Stellt sich nach Entlastung die ursprüngliche Form wieder ein, so spricht man vom elastischen Verhalten des Werkstoffes. Ist dies nicht der Fall, so hat sich der Werkstoff plastisch verformt.

Der Übergang zwischen elastischem und plastischem Verhalten wird bei den meisten Stahlsorten durch die Streck- oder Fließgrenze charakterisiert. Sie ist neben der Zugfestigkeit ein Kriterium für die Bemessung und wird mit Hilfe des Zugversuchs nach DIN EN ISO 6892-1 anhand der Spannungs-Dehnungs-Linie bestimmt. Hierbei beschreibt die Streckgrenze das Spannungs-Niveau, bis zu dem sich der Stahl elastisch verhält. Die Zugfestigkeit entspricht hingegen der maximal aufnehmbaren Spannung bei gleichzeitigen plastischen Verformungen. Nach Erreichen der Zugfestigkeit kommt es zu einem Spannungsabfall bei weiterer Zunahme von Verformungen, bis Bruch eintritt, siehe Bild 2.

rzeugnisse aus Baustählen neine technische Lieferbedingungen					
neine technische Lieferbedingungen					
ierte Baustähle	\$235]R/J0/J2 \$275]R/J0/J2 \$355]R/J0/J2/K2 \$450J0				
algeglühte/ normalisierend gewalzte eiß geeignete Feinkornbaustähle	\$275N/NL \$355N/NL \$420N/NL \$460N/NL				
	\$275M/ML \$355M/ML \$420M/ML \$460M/ML				
rfeste Baustähle	\$235JOW/J2W \$355JOWP/J2WP \$355JOW/J2W/K2W				
	S460Q/QL/QL1				
DIN EN 10210 – Warmgefertigte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkornbaustählen					
ische Lieferbedingungen	\$235JRH \$275JOH/J2H/NH/NLH \$355JOH/J2H/K2H/ NH/NLH \$420NH/NLH \$460NH/NLH				
Grenzabmaße, Maße und statische Werte					
geschweißte Hohlprofile für den Stahlbaustählen	au aus unlegierten				
ische Lieferbedingungen	S235JRH S275JOH/J2H/NH/NLH/MH/MLH S355JOH/J2H/K2H/NH/NLH/MH/MLH S420MH/MLH S460NH/NLH/MH/MLH				
Grenzabmaße, Maße und statische Werte					
	ische Lieferbedingungen abmaße, Maße und statische Werte geschweißte Hohlprofile für den Stahlba ustählen ische Lieferbedingungen				

Tabelle 1 Einsetzbare Baustähle und Hohlprofile nach DIN EN 1993-1-1

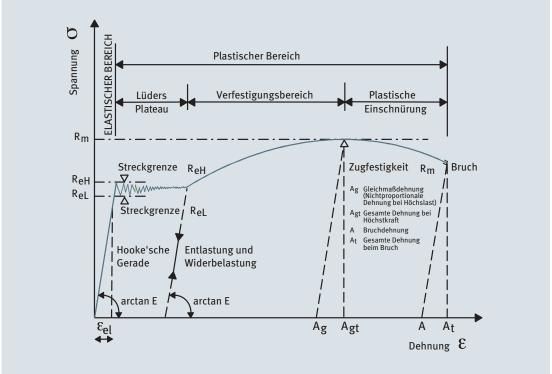


Bild 2 Typische Spannungs-Dehnungs-Linie eines Baustahls mit Lüders-Plateau

Produktnorm	Stahlsorte	Erzeugnisdicke t≤40 mm		Erzeugnisdicke 40 mm < t≤80 mm	
	Statitsofte	fy [N/mm ²]	f _u [N/mm ²]	fy [N/mm ²]	f _u [N/mm ²]
DIN EN 10025-2	S235JR/J0/J2	235	360	215	360
	S275JR/J0/J2	275	430	255	410
	S355JR/J0/J2/K2	355	490	335	470
	S450J0	440	550	410	550
DIN EN 10025-3	S275N/NL	275	390	255	370
	S 355N/NL	355	490	335	470
	S420N/NL	420	520	390	520
	S460N/NL	460	540	430	540
	S275M/ML	275	370	255	360
DIN EN 10025 /	S355M/ML	355	470	335	450
DIN EN 10025-4	S420M/ML	420	520	390	500
	S460M/ML	460	540	430	530
DIN EN 10025-5	S235W	235	360	215	340
	S355W	355	490	335	490
DIN EN 10025-6	S460Q/QL/QL1	460	570	440	550
	S235H	235	360	215	340
	S275H	275	430	255	410
	S355H	355	510	335	490
DIN EN 10210-1	S275NH/NLH	275	390	255	370
	S355NH/NLH	355	490	335	470
	S420NH/NLH	420	540	390	520
	S460NH/NLH	460	560	430	550
	S235H	235	360		
	S275H	275	430		
	S355H	355	510		
	S275NH/NLH	275	370		
DIN EN 10219-1	S355NH/NLH	355	470		
DIN EN 10219-1	S460NH/NLH	460	550		
	S275MH/MLH	275	360		
	S355MH/MLH	355	470		
	S420MH/MLH	420	500		
	S460MH/MLH	460	530		

 Tabelle 2
 Nennwerte der Streckgrenze f_v und Zugfestigkeit f_u für Baustähle nach DIN EN 1993-1-1

Kriterium	nach DIN EN 1993-1-1 für Baustähle nach DIN EN 10025-2 bis 6, DIN EN 10210-2 und DIN EN 10219-2
f _u	≥ 1,10
А	≥ 15 %
$\mathbf{\epsilon}_{u}$	≥ 15 · E y

Mindestwert der Zugfestigkeit;

 f_{y} Mindestwert der Streckgrenze; A Bruchdehnung bezogen auf eine Messlänge von 5,65 $\cdot \sqrt{A_{0}}$: $A = \frac{L_{u} - L_{o}}{L_{o}} \cdot 100 \text{ [%]}$

$$A = \frac{L_u - L_o}{I} \cdot 100 [\%]$$

mit L_o Anfangsmesslänge mit $L_o = 5,65 \cdot \sqrt{A_0}$; L_u Länge nach Bruch;

A Ausgangsquerschnittsfläche;

 \mathbf{E}_{u} Gleichmaßdehnung, wobei $\, \epsilon_u \, \, \text{der Zugfestigkeit} \, f_{_u} \, \, \text{zugeordnet ist;}$

 $\varepsilon_y = \frac{f_y}{\varepsilon}$ Fließdehnung:

Tabelle 3 Duktilitätsanforderungen an Baustähle und Flacherzeugnisse

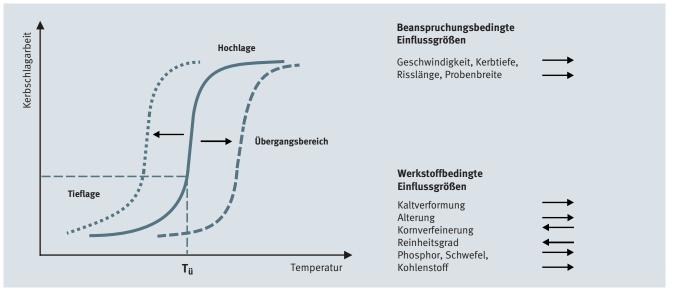


Bild 3 Zähigkeitsverhalten von ferristischem Baustahl

Die der Bemessung zugrunde zu legenden charakteristischen Werte der Streckgrenze und Zugfestigkeit können entweder den Produktnormen oder direkt der Bemessungsnorm für Stahlkonstruktionen, der DIN EN 1993-1-1, entnommen werden, siehe Tabelle 2. Zusätzlich zu den in den Produktnormen gestellten Anforderungen an die Festigkeitseigenschaften der Baustähle sind die in DIN EN 1993-1-1 definierten Duktilitätsanforderungen zu erfüllen, siehe Tabelle 3. Neben den Festigkeitseigenschaften sind die Zähigkeitseigenschaften von Baustahl mit Blick auf die Werkstoffwahl zur Vermeidung von Sprödbruch bei Einsatz der Baustähle bei tiefen Temperaturen von Bedeutung. Das prinzipielle Zähigkeits-Temperatur-Verhalten ist in Bild 3 dargestellt. Wesentliche Einflussfaktoren sind die Bauteildicke, die Temperatur, der Spannungszustand, der Kaltverformungsgrad und die Dehnrate. Bei Beanspruchung in Dickenrichtung ist zusätzlich eine Werkstoffwahl bzgl. der Vermeidung von Terrassenbruch durchzuführen. Die Regelungen zur Werkstoffwahl für beide Fälle, Sprödbruch und Terrassenbruch, sind in DIN EN 1993-1-10 und den nationalen DASt-Richtlinen 009 und 014 enthalten, siehe auch Bild 3 [1].

Verarbeitung

Stahl lässt sich warm und kalt verformen (walzen, ziehen, pressen, biegen usw.), mechanisch bearbeiten (sägen, bohren, stanzen, fräsen, hobeln usw.) und schweißen.

Wirtschaftlichkeit

Die Projektierung eines Gebäudes besteht im Wesentlichen aus dem architektonischen Entwurf, einem Tragwerkskonzept und der Einschätzung der Baukosten. Dabei ist die Kostenplanung heute eine der wesentlichen Aufgaben aller Planungs- und Baubeteiligten, da Qualitäten, Termine und Kosten die relevanten Erfolgsfaktoren eines jeden Bauprojekts sind.

Die Kostenschätzung kann schon in der Vorplanung über Erfolg oder Misserfolg eines Bauprojektes entscheiden.

Hierzu gehören neben den angegebenen Werten auch die Einsparungen bei den Gründungs- und Fundamentarbeiten sowie Vorteilen in der Bauzeit und Baulogistik, die im Rahmen jeder, ganzheitlichen Kostenplanung Berücksichtigung finden sollten.

Nachhaltigkeit

Produkte aus Baustahl können wiederholt eingesetzt werden. Ist eine Verwendung in der ursprünglichen Form nicht möglich, so werden sie eingeschmolzen und zur Herstellung neuer Produkte wiederverwendet.

Baustahl kann durch eine hohe Sammelrate (99%) sowie Recycling (88%) und Wiederverwendung (11%) punkten und ist deshalb regenerativ [2, 3]. In der Umwelt-Produktdeklaration "Baustähle" (Environmental Product Declaration, kurz: EPD), die durch PE INTERNATIONAL in Zusammenarbeit mit »bauforumstahl erstellt wurde, sind Produktkennzahlen von westeuropäischen Stahlherstellern – den Inhabern dieser Deklaration – zusammengestellt [4, 5].

Normen/Richtlinien

- DIN EN 10027-1:2005-10, Bezeichnungssysteme für Stähle . Teil 1: Kurznamen; Deutsche Fassung EN 100271:2005
- DIN EN 10025-1 bis 6: Warmgewalzte Erzeugnisse aus Baustählen, Teile 1 bis 6, Deutsche Fassung EN 10025, Teile 1 bis 6
- DIN EN 10210-1:2006-07, Warmgefertigte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkombaustählen – Teil 1: Technische Lieferbedingungen; Deutsche Fassung EN 10210-1:2006
- DIN EN 10219-1:2006-07, Kaltgefertigte geschweißte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkornbaustählen Teil 1: Technische Lieferbedingungen; Deutsche Fassung EN 10219-1:2006
- DIN EN 1993-1-1:2010-12, Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1993-1-1:2005 + AC:2009
- •DIN EN ISO 6892-1:2009-12, Metallische Werkstoffe Zugversuch Teil 1: Prüfverfahren bei Raumtemperatur (ISO 6892-1:2009); Deutsche Fassung EN ISO 6892-1:2009
- DIN EN 1993-1-10:2010-12, Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-10: Stahlsortenauswahl im Hinblick auf Bruchzähigkeit und Eigenschaften in Dickenrichtung; Deutsche Fassung EN 1993-1-10:2005 +
- DASt-Richtlinie 009:2008-05, Stahlsortenauswahl für geschweißte Stahlbauten, Herausgeber: Deutscher Stahlbau-Verband DSTV, Düsseldorf. Stahlbau Verlags- und Service GmbH, Düsseldorf
- DASt-Richtlinie 014:1981-01, Empfehlungen zum Vermeiden von Terrassenbrüchen in geschweißten Konstruktionen aus Baustahl. Herausgeber: Deutscher Stahlbau-Verband DSTV, Düsseldorf. Stahlbau Verlags- und Service GmbH, Düsseldorf

Literatur:

[1] Kühn, B., Sedlacek, G., Höhler, S., Stranghöner, N., DIN EN 1993-1-10: Stahlsortenauswahl im Hinblick auf die Bruchzähigkeit und Eigenschaften in Dickenrichtung, in: Stahlbau-Kalender 2012, Hrsg.: Kuhlmann, U., Verlag Ernst & Sohn GmbH & Co. KG, Berlin, 2012.

[2] Nachhaltige Gebäude – Planen, Bauen, Betreiben, Nr. B105, »bauforumstahl e. V., Düsseldorf, 2011.

[3] Ökobilanzieller Vergleich von Hallen unterschiedlicher Bauweisen, »bauforumstahl e. V., Düsseldorf, 2011.

[4] Umwelt-Produktdeklaration nach ISO 14025, Deklarationsnummer EPD-BFS-2010111-D, Institut Bauen und Umwelt e.V., »bauforumstahl e.V., Düsseldorf, 2010

[5] Umwelt-Produktdeklaration Baustähle – Erläuterungen, Schriftenreihe Nr. B104, »bauforumstahl e. V., Düsseldorf, 2010.

