

Technische Dokumentation 604

Stahlverbundträger mit großen Stegausschnitten

von Helmut Bode und Jochen Stengel Universität Kaiserslautern, Bauingenieurwesen - Stahlbau

BAUEN MIT STAHL

BAUEN MIT STAHL ist eine Gemeinschaftsorganisation von stahlerzeugenden Unternehmen und dem Deutschen Stahlbau-Verband DSTV.

Ihre **Aufgaben** sind die verkaufsunabhängige, firmenneutrale und kostenfreie Information der maßgeblichen Bauentscheidungsträger, Schulung und Nachwuchsförderung sowie eine imagefördernde Öffentlichkeitsarbeit.

Zielgruppen sind alle Bauentscheidungsträger und am Bau beteiligte Gruppen des privaten und öffentlichen Hochund Brückenbaus, Planer und Investoren, Architekten und Bauingenieure, Universitäten und Hochschulen, sowie die fachinteressierte Öffentlichkeit.

Informationsschwerpunkte sind:

- Gestalterische Möglichkeiten mit Stahltragwerken
- Neue Technologien und Einsatzbereiche für den Stahlbau
- Technische Vorteile des Stahlbaus
- Wirtschaftlicher Nutzen für den Anwender

Die Informationen sind objektbezogen, individuell ausgerichtet und umfassen folgende Themenbereiche:

- Tragwerkswahl
- Konstruktive Ausführungsmöglichkeiten
- Statische Aspekte
- Verbundkonstruktionen
- Deckensysteme
- Dach- und Wandsysteme
- Brandschutz
- Korrosionsschutz
- Fertigungsverfahren
- Montagekonzepte
- Montagezeiten/Gesamtbauzeit
- Qualitätsstandard
- Ausschreibungen
- Kostenschätzungen/Kostenvergleiche
- Einflußfaktoren Gesamtbaukosten
- Ökologische Aspekte

Über Regionalbüros geben erfahrene Stahlbauingenieure vor Ort objektspezifische, fachliche Unterstützung schon in der Projektierungsphase. Sie erstellen schriftliche Ausarbeitungen von Alternativen und vermitteln bei Bedarf Experten für spezielle Begutachtungen. Darüber hinaus zählt zum Leistungsumfang von BAUEN MIT STAHL:

- Schulung und Nachwuchsförderung
- Vorträge an Hochschulen
- Ausrichtung von Tagungen und Seminaren
- Austellungen und Messen
- Herausgabe von technischen Broschüren
- Publikation von beispielhaften Stahlbauwerken
- Führung von Baustellen- und Objektbesichtigungen
- Ausrichtung von Architekturwettbewerben
- Einbeziehung deutscher und europäischer Fachinstitute
- Kontaktpflege zu allen bauinvolvierten Gruppen

Impressum

Stahlverbundträger mit großen Stegausschnitten von Helmut Bode und Jochen Stengel Universität Kaiserslautern Bauingenieurwesen-Stahlbauwesen

Herausgeber:

BAUEN MIT STAHL

Sohnstr. 65
40237 Düsseldorf
Postfach 10 48 42
40039 Düsseldorf
Telefon + 49(0) 211/6707-828
Telefax + 49(0) 211/6707-829
Internet: www.bauen-mit-stahl.de
Email: zentrale@bauen-mit-stahl.de

3. überarbeitete Auflage, August 1998

Ein Nachdruck dieser Veröffentlichung ist - auch auszugsweise - nur mit schriftlicher Genehmigung des Herausgebers und bei deutlicher Quellenangabe gestattet.

Die zugrunde liegenden Informationen wurden mit größter Sorgfalt recherchiert und redaktionell bearbeitet. Eine Haftung ist jedoch ausgeschlossen.

Bildnachweis

Aus Sonderdruck " Das neue Eisenhüttenhaus " Stahl-Informations-Zentrum

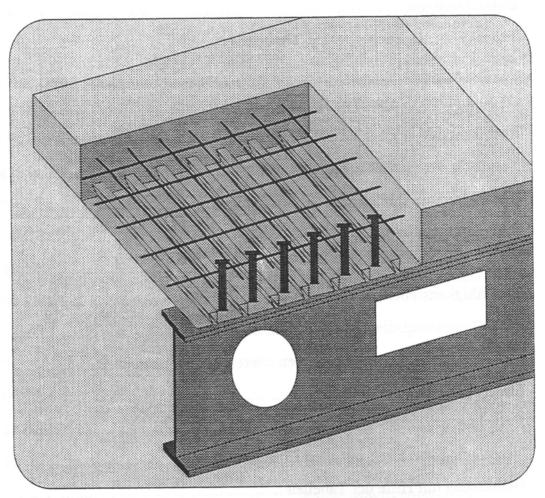
Inhalt

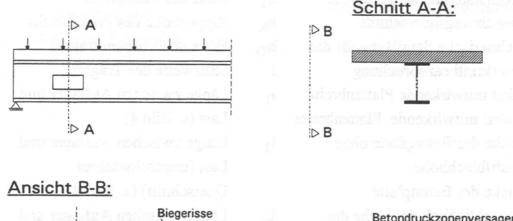
0. Inhaltsverzeichnis

0.	Inhaltsverzeichnis	1
1.	Einleitung und Problemstellung	
2.	Bezeichnungen	4
3.	Tragfähigkeit: Versuche und Theorie	6
3.1	Allgemeines	6
3.2	DFG- und AiF-Versuchsprogramm.	6
3.3	Rechenmodell	9
3.4	Vergleich Versuch - Theorie	15
4.	Bemessungsverfahren	17
5.	Bemessungshilfen	18
5.1	Allgemeines	18
5.2	Tragfähigkeitstabellen	18
5.3	M-V-Bemessungsdiagramme	37
5.4	M-N-Interaktionsdiagramm für den oberen Teilquerschnitt	50
5.5	Stahlträger ohne Verbund	50
6.	Beispiele	51
6.1	Berechnung von Hand mit allen Einzelschritten	51
6.2	Bemessung mit Hilfe der Tabellen	56
6.3	Bemessung mit Hilfe der M-V-Diagramme	57
6.4	Berechnung der Tragfähigkeit mit dem EDV-Programm "TMA"	57
6.5	Vergleich der Bemessungsverfahren	57
6.6	Mehrere Ausschnitte hintereinander	58
6.7	Runde Ausschnitte	60
7.	Zusätzliche statische Nachweise und Hinweise auf die	
	konstruktive Ausbildung	61
8.	Normen und Literatur	66
9.	Schluß	68

1. Einleitung und Problemstellung

Bei Gebäuden mit Unterzugdecken müssen in aller Regel horizontale Installationen unter den Unterzügen verlegt werden. Um nicht zu viel an Raumhöhe zu verlieren, bietet sich als Alternative an, die Leitungen und Kanäle durch die Stege der Unterzüge hindurch zu führen.




Bild 1: Geschoßdecke mit Stegausschnitten

Sieht man eine Geschoßdecke in Stahlverbundbauweise vor, ist es möglich, selbst große Stegausschnitte in den Deckenträgern anzuordnen. Da im Bereich dieser Stegöffnungen jedoch nur noch reduzierte Querschnitte zur Verfügung stehen, werden zusätzliche statische Nachweise erforderlich.

Befinden sich die Öffnungen nahe am Auflager, sind die Zusatzbeanspruchungen aufgrund der dort auftretenden großen Querkräfte hoch. Es ist daher im allgemeinen anzustreben, große rechteckige Stegöffnungen nicht in Auflagernähe anzuordnen. Bei einem Verbundträger trägt im Öffnungsbereich der Stahlbetongurt jedoch mit. Dadurch ergibt sich eine hohe Tragfähigkeit, so daß sogar noch in Auflagernähe die Anordnung großer Stegöffnungen möglich ist.

Der genaue statische Nachweis erfordert mehrere Berechnungsschritte und ist daher umfangreich. Außerdem müssen Stabilitätsbetrachtungen angestellt werden, wenn die Stege unversteift sind und kein Kammerbeton vorgesehen wird. Um schon in der frühen Planungsphase Lage, Form und Größe von Stegausschnitten festlegen zu können, wurden auf Grundlage genauer Berechnungen einfache Bemessungsdiagramme ausgearbeitet. Damit wird bereits im Planungsstadium eine schnelle Vorbemessung des Öffnungsbereiches ermöglicht.

Das Problem bei der Bemessung entsteht dadurch, daß ein gelochter Nettoquerschnitt vorliegt, der reduzierte Biege- und Querkrafttragfähigkeiten aufweist. Bei
Querkraftbeanspruchung kommt hinzu, daß die Querkraft im Bereich des Stegausschnittes zusätzliche, sogenannte sekundäre oder lokale Biegemomente hervorruft,
wie sie aus der Berechnung von Rahmen- und Vierendeelträgern bekannt sind.
Diese müssen dann zusammen mit der "globalen" Beanspruchung von den verbliebenen Restquerschnitten "lokal" aufgenommen werden (Bild 2). Wenn die Stegausschnitte im Bereich großer Querkräfte angeordnet werden, sind dieser lokale Einfluß
und die sich daraus ergebende Traglastminderung besonders stark.

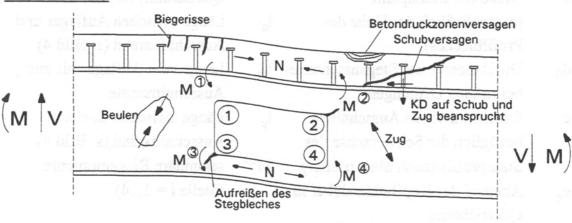


Bild 2: Veranschaulichung von Kraft- und Verformungsgrößen und der möglichen Versagensarten

2. Bezeichnungen

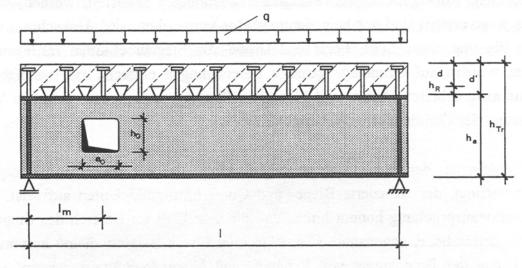


Bild 3: Bezeichnungen

a	Abstand zwischen zwei	$f_{y,d}$	Bemessungwert der
	Ausschnitten	8/11/1	Streckgrenze
\mathbf{a}_0	Länge des Stegausschnittes	h_0	Höhe des Ausschnittes
Aa	Profilstahlquerschnittsfläche	ha	Höhe des Stahlprofils
A_S	Bewehrungsquerschnitt	h_R	Rippenhöhe des Profilblechs
A_{V}	rechnerische Stegfläche für die	h_{Tr}	Höhe des Verbundträgers
	Querkraftbeanspruchung	1	Stützweite des Trägers
$b_{m,l}$	lokal mitwirkende Plattenbreite	11	Länge zwischen Auflager und
$b_{m,g}$	global mitwirkende Plattenbreite		Last (s. Bild 4)
d	Dicke der Betonplatte ohne	12	Länge zwischen Auflager und
	Profilblechhöhe		Last (ungeschwächter
d'	Dicke der Betonplatte		Querschnitt) (s. Bild 4)
	(einschließlich der Höhe des	la	Länge zwischen Auflager und
	Profilbleches)		Ausschnittsrand (s. Bild 4)
\mathbf{d}_0	Durchmesser des Stegausschnittes	l _m	Länge vom Auflager bis zur
	bei runden Öffnungen		Ausschnittsmitte
e	Exzentrizität des Ausschnittes	l_p	Länge zwischen Last und
	bezüglich der Schwerachse des		Ausschnittsrand (s. Bild 4)
	Stahlprofils (nach oben positiv)	M^{\odot}	sekundäre Biegemomente
e_q	Abstand der Kopfbolzendübel in		(Stelle $i = 14$)
•	Querrichtung		

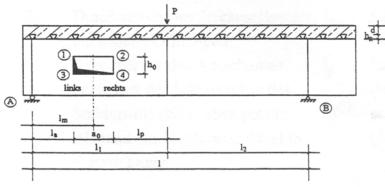
Bezeichnungen

$M_{pl,N}$	V plastische Biegemomenten-	S _{red}	reduzierte Stegdicke
Belief	tragfähigkeit unter Berücksichti-	TMA	Abkürzung für: (Verbund-)
	gung von Normalkraft und		Träger mit Ausschnitten
	Querkraft	V _c	Querkrafttragfähigkeit der
No	Normalkraft im oberen		Betonplatte
	Teilquerschnitt	$V^{\oplus}_{L,l}$	Lokaler Horizontalschub an der
N^{u}	Normalkraft im unteren		Stelle ①
	Teilquerschnitt	$V^{\odot}_{L,l}$	Lokaler Horizontalschub an der
N_g	global wirkende Normalkraft		Stelle ②
N_l	lokal wirkende Normalkraft	V_0	Querkraft im oberen
n_g	Anzahl der Kopfbolzen zur		Teilquerschnitt
	Abtragung des globalen Schubs	V_{pl}	plastische Querkrafttragfähigkeit
n_l	Anzahl der Kopfbolzen zur	Vu	Querkraft im unteren
	Abtragung des lokalen Schubs		Teilquerschnitt
N_{pl}	plastische Normalkraft	V_{u}	Querkrafttragfähigkeit im
P	Pressenlast (Einzellast)		Grenzzustand
P_{calc}	rechnerische Traglast	$V_{\mathbf{w}}$	Querkrafttragfähigkeit des
Pexp	Traglast im Versuch		Stahlsteges
P_{Rd}	Schubtragfähigkeit der	Z	Innerer Hebelarm der Normal-
	Kopfbolzendübel		kräfte aus dem Biegemoment M
$P_{\mathbf{u}}$	maximale Pressenlast		

3. Tragfähigkeit: Versuche und Theorie

3.1 Allgemeines

Bevor die Bemessungshilfen dieser Dokumentation aufgestellt werden konnten, sind an der Universität Kaiserslautern umfangreiche Untersuchungen der Tragfähigkeit von Verbundträgern im Bereich großer Stegausschnitte durchgeführt worden. Hierzu zählen:


- Traglastversuche im Rahmen eines DFG-Forschungsvorhabens [7]
- Traglastversuche im Rahmen eines AiF-Forschungsvorhabens [6]
- FEM-Berechnungen
- Physikalisch nichtlineare Berechnungen auf der Basis der Stabwerkstheorie.

Im folgenden werden die wichtigsten Versuchsparameter zusammengestellt, um den Versuchsumfang und den damit abgedeckten Parameterbereich zu dokumentieren. Vergleichend erfolgt die physikalisch nichtlineare Berechnung in etwas vereinfachter Form mit Berücksichtigung verschiedener Versagenskriterien.

Der abschließende Vergleich der experimentell und rechnerisch ermittelten Tragfähigkeiten zeigt eine sehr gute Übereinstimmung. Das gilt auch dann noch, wenn man weitere 15 nordamerikanische Versuche [9] in die Auswertung mit einbezieht. Die Versuchsergebnisse zeigen aber auch, daß die Verformbarkeit im Öffnungsbereich eingeschränkt ist (z.B. bei Schubversagen im Betongurt), so daß Stahlverbundträger mit großen Stegausschnitten nicht mit Hilfe der Fließgelenktheorie bemessen werden sollten. Weitere Angaben und Bemerkungen zum Trag- und Versagensverhalten können dem AiF-Forschungsbericht [6] und der Stahlbau-Veröffentlichung [8] entnommen werden.

3.2 DFG- und AiF-Versuchsprogramm

Von den insgesamt 14 Versuchen des DFG-Projektes wurden 13 mit rechteckigen Stegausschnitten und einer (Versuch A1) mit rundem Stegausschnitt Ø 200 mm in Stegmitte durchgeführt. Die Träger wurden so variiert, daß 4 Versuche außermittig

- Zur Bezeichnung der 4 Ecken: Stelle (1): oberer Teilquerschnitt, lokales negatives Moment Stelle 2: oberer Teilquerschnitt, lokales positives Moment
 - Stelle 3: unterer Teilquerschnitt, lokales negatives Moment

Stelle 4: unterer Teilquerschnitt, lokales positives Moment

Ausschnitte angeordnete hatten und 5 Versuchsträger mit Holoribblechen (als verlorene Schalung, die den Obergurt jedoch profiliert) und unterbrochener Verbundfuge hergestellt waren. 2 Träger waren sehr hoch bzw. niedrig verdübelt, und 2

Bild 4: Versuchsaufbau und Bezeichnungen

waren mit Längsaussteifungen am unteren Rand des Ausschnitts versehen. Diese beiden Versuche D1 und D2 stellten bereits den Übergang zum AiF-Projekt dar. In Bild 4 ist der Versuchsaufbau dargestellt, Tabelle 1 gibt die wichtigsten Kenngrößen an. Das Versuchsprogramm umfaßt damit:

- massive Betongurte (Gruppe A, C und D),
- Betongurte mit unterbrochener Verbundfuge auf Holoribblech (Gruppe B),
- im Steg exzentrisch angeordnete Ausschnitte (Gruppe C) und
- zwei Vorversuche mit versteiften Längsrändern (Gruppe D).

Außerdem wurden variiert:

- die Lage des Ausschnittes: randnah (M/V≤1) und im Feld (M/V>1),
- Versuch A1 mit kreisrundem Ausschnitt,
- Stahlprofile der Reihen HEA und IPE aus St 37 und St 52,
- Betonfestigkeiten (diese wurden nicht gezielt variiert),
- Ausschnittsgrößen zwischen 300 und 1200 cm²,
- Ausschnittsbreiten a₀ zwischen 200 und 600 mm,
- Ausschnittshöhen h_0 zwischen 200 und 250 mm ($h_0/h_a \approx 0.6$),
- die Verdübelung sowie
- die Stahlbetonbewehrung, siehe [10].

Nr.	Bez.	Stahl- profil	Beton- gurt	Aus- schnitt	Кор	fbolzer	1	_	ge des A		Variante
			b/d' [cm]	h ₀ /a ₀ [cm]	Ø	h _d [cm]	e ₁ [cm]	l _a [cm]	l _p [cm]	l ₁ [cm]	
1	A1	HE 300A	100/16	d ₀ =20	2 Ø 7/8"	15	10	60	40	120	Rundausschnitt
2	A2	HE 300A	100/16	20/40	2 Ø 7/8"	15	10	40	40	120	Grundversuch
3	A3	HE 300A	100/16	20/40	5 Ø 7/8"	15	10	40	40	120	Verdübelungsgrad
4	A4	IPE 360	100/10	20/60	1 Ø 5/8"	7,5	14	40	40	140	Verdübelungsgrad
5	B1	HE 300A	150/16	20/40	2 Ø 7/8"	15	15	40	130	210	Holoribplatte
6	B2	HE 300A	150/16	20/40	2 Ø 7/8"	15	15	40	130	210	Holoribplatte
7	B3	IPE 400	100/16	25/45	2 Ø 7/8"	15	15	45	60	150	Holorib, bewehrt
8	B4	IPE 400	100/16	25/45	2 Ø 7/8"	15	15	45	60	150	Holorib, bewehrt
9	B5	IPE 400	100/16	25/45	2 Ø 7/8"	15	15	135	60	240	Holorib, bewehrt
10	C1	IPE 400	100/16	24/48	2 Ø 7/8"	15	12	40	40	128	exzentr. untenliegend
11	C2	IPE 400	100/16	24/48	2 Ø 7/8"	15	12	40	40	128	exzentr. obenliegend
12	C3	IPE 400	100/16	24/48	2 Ø 7/8"	10	18	150	40	238	zentrisch, M/V-Verh.
13	D1	IPE 400	120/10	24/48	2 Ø 7/8"	10	16	72	96	216	Aussteifung
14	D2	IPE 400	120/10	24/48	2 Ø 7/8"	10	16	72	96	216	Aussteifung

Tabelle 1: Versuchsdaten des DFG-Projektes

Im Rahmen des AiF-Vorhabens [6] wurden praxisgerechte Versteifungen und Verstärkungsmaßnahmen untersucht. Dazu zählen:

- horizontale Steifen (am unteren Rand des Ausschnittes),
- horizontale und vertikale Steifen (Versuch S4),
- Verstärkung des Betongurtes (Breite, Dicke, Bewehrungsmenge),
- Kammerbeton (mit Brandschutzbewehrung) und
- zusätzlich aufgeschweißte Kopfbolzendübel.

Dabei unterscheiden sich die Möglichkeiten der Versteifung des Ausschnittsbereichs im Stahlverbundbau nicht von denen des reinen Stahlbaus (vgl. z.B. [3]). Sie dienen vor allem dazu, die Restquerschnitte möglichst biegesteif und -tragfähig auszubilden.

Insgesamt wurden 15 großmaßstäbliche Traglastversuche an Einfeldträgern mit Stegausschnitten durchgeführt. Es wurden erstmalig auch Ausschnitte im Bereich negativer Biegemomente untersucht, die bei Krag- und Durchlaufträgern auftreten können.

Nr.	Bez.	Stahl- profil	Beton- gurt	Aus- schnitt	Kop	fbolzer	l	,	ge des A		Variante
			b/d'	h ₀ /a ₀	Ø	h _d	e _l	l _a	l _p	l ₁	
			[cm]	[cm]		[cm]	[cm]	[cm]	[cm]	[cm]	
1	S1	IPE 400	120/15	24/48	2 Ø 7/8"	15	15	72	96	216	horizontale Steife
2	S2	IPE 400	120/15	24/72	2 Ø 7/8"	15	15	60	84	216	hor. Steife, großes a
3	S3	IPE 400	120/15	24/72	2 Ø 7/8"	15	15	60	84	216	hor. Steife, großes a
4	S4	IPE 400	120/15	24/48	2 Ø 7/8"	15	15	72	96	216	hor. u. vertikale Steife
5	P1	IPE 400	120/21	24/48	2 Ø 7/8"	20	15	72	96	216	hor. Steife, Plattendicke
6	P2	IPE 400	120/21	24/48	2 Ø 7/8"	20	15	72	96	216	hor. Steife, Plattendicke
7	P3	IPE 400	250/15	24/48	2 Ø 7/8"	15	15	72	96	216	hor. Steife, Plattenbreite
8	P4	IPE 400	250/15	24/48	2 Ø 7/8"	15	15	72	96	216	hor. Steife, Plattenbreite
9	P5	IPE 400	120/15	24/48	3 Ø 7/8"	15	15	72	96	216	Bewehrung, zus. Dübel
10	P6	IPE 400	120/15	24/48	3 Ø 7/8"	15	15	72	96	216	Bewehrung, zus. Dübel
11	P12	IPE 400	120/21	33/50	2 Ø 7/8"	20	15	58	82	190	Ausschnittshöhe
12	K1	IPE 400	120/15	24/48	2 Ø 7/8"	15	15	72	96	216	Kammerbeton
13	K2	IPE 400	120/15	24/48	2 Ø 7/8"	15	15	72	96	216	Kammerbeton
14	K3	IPE 400	120/15	d ₀ =24	2 Ø 7/8"	15	15	84	108	216	" , runder Ausschnit
15	K4	IPE 400	120/15	d ₀ =24	2 Ø 7/8"	15	15	116	76	216	", zwei runde Aus-
			-	in the same		-		52	140		schnitte

Tabelle 2: Versuchsdaten des AiF-Projektes

Tabelle 2 enthält die wichtigsten Versuchsdaten. Die gesamte Versuchsreihe untergliederte sich in die 3 Teilserien:

- 1. Serie S: Untersuchung des Einflusses der stahlbaumäßigen Verstärkung der Ausschnitte durch horizontale bzw. horizontale und vertikale Steifen.
- 2. Serie P: Variation der Stahlbetonplatte:
 - Plattendicke,
 - Plattenbreite und
 - Längsbewehrungsgrad mit gleichzeitig hoher Verdübelung.
- Serie K: Durch Kammerbeton verstärkte, rechteckige und runde Ausschnitte.
 Dabei war der Kammerbeton nach dem Brandschutz-Merkblatt 117
 [22] für den Brandfall bewehrt.

Mit Ausnahme der Versuche P5 und P6 hatten alle Betongurte eine zweilagige Längs- und Querbewehrung. Die Längsbewehrung bestand aus Stabstahl $\emptyset 10$ (Längsbewehrungsgrad $\mu_l \approx 0.8$ %), die Querbewehrung aus Stabstahl $\emptyset 12/150$.

3.3 Rechenmodell

Das Rechenmodell beruht auf der Stabwerkstheorie und lehnt sich an die übliche Berechnung von Trägern mit Stegausschnitten, z.B. für reine Stahlträger nach Sahmel [16], an. Konsequent angewendet liefert es die maßgebenden Kraftgrößen, die verfolgt und hinsichtlich der Beanspruchbarkeit überprüft werden müssen. Das Modell gilt für die rechnerische Erfassung des Bruchzustandes auf der Basis plastischer Querschnittstragfähigkeiten mit vollständiger Umlagerung der örtlichen Momente im Öffnungsbereich. Im wesentlichen erfolgt die Berechnung in 5 Schritten:

- Zerlegung des globalen Biegemoments M in eine Druck- und Zugkraft, die im Abstand z in den plastischen Schwerachsen der Restquerschnitte wirkend angenommen werden.
- 2. Berechnung der am Rahmensystem aus der Querkraft entstehenden Sekundärmomente M[®] bis M[®] (Vierendeelmechanismus), wobei an jeder Stelle eine unterschiedliche Schnittgrößenkombination aus Biegemoment, Querkraft und Normalkraft wirksam ist (vgl. Bild 5). Daher erfordert die Berechnung der Biegetragfähigkeiten an diesen Stellen M-N-V-Interaktionen.
- 3. Kontrolle der Gleichgewichtsbedingungen:

$$\begin{split} V &= V^o + V^u \\ V^o \cdot a_0 &= M^{\textcircled{\tiny 0}} + M^{\textcircled{\tiny 2}} \\ V^u \cdot a_0 &= M^{\textcircled{\tiny 3}} + M^{\textcircled{\tiny 6}} \end{split}$$

4. Nachweise mit den möglichen Versagenskriterien.

 Gegebenenfalls sind weitere Iterationsschritte erforderlich, wenn die Tragfähigkeiten der Restquerschnitte nicht ausgenutzt sind.

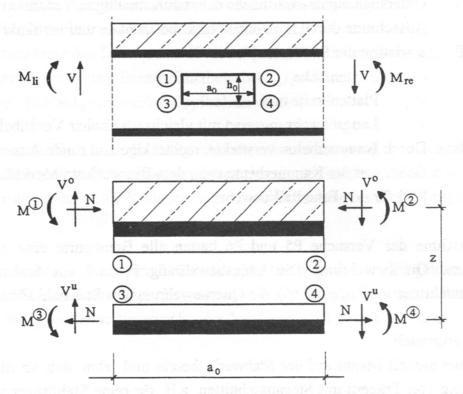


Bild 5: Globale und lokale Stabendschnittgrößen am Stegausschnitt

Die richtige Berechnung der Tragfähigkeit ist also hauptsächlich abhängig von der möglichst genauen Erfassung des Einflusses von Normalkraft und Querkraft auf die örtlichen Biegetragfähigkeiten unter Berücksichtigung verschiedener, für Verbundträger mit Stegausschnitten typischer Versagenskriterien.

Das Verfahren ist anwendbar für weitgehend beliebige Verbundträger mit rechtekkigen und runden Stegausschnitten im Bereich positiver und negativer Momente. Neben Querschnitts- und Systemdaten werden die Einflüsse aus der Ausschnittsgeometrie, aus den Längsverstärkungen sowie aus der Tragfähigkeit und Anordnung der Kopfbolzen erfaßt. Da keine gezielte Versuchserfahrungen mit dynamischer Belastung vorliegen, gilt das Verfahren nur für vorwiegend ruhende Belastung. Weiterhin dürfen direkt über dem Ausschnitt keine großen Einzellasten angreifen, da die daraus entstehende örtliche Biegung Einfluß auf das Tragverhalten hat. In den nachfolgenden Ausführungen wird das Rechenmodell näher beschrieben.

Die Verwendung eines Stabwerkmodells erfordert Annahmen über die mittragende Breite b_m der Betonplatte. Es wird zwischen den lokalen (Index "l") und globalen (Index "g") Tragwirkungen unterschieden:

$$b_{m,l} = e_q + 3.5 \cdot d$$

 $b_{m,g} = l_{0/4}$ mit $e_q = Abstand der Kopfbolzen in Querrichtung$
 $l_0 = Abstand der Momentennullpunkte$
 $d = Dicke der Betonplatte ohne Profilblechhöhe.$

Mit Hilfe der lokal mitwirkenden Plattenbreite werden bei der Berechnung der plastischen Biegetragfähigkeit die Momente an den Stellen ① und ② unter Berücksichtigung der anteiligen Normalkraft bestimmt. Diese berechnet sich aus dem Verhältnis zwischen lokaler und globaler Plattenbreite. Bild 6 zeigt für den oberen Teilquerschnitt ein typisches M-N-Interaktionsdiagramm, aus dem die Abhängigkeit der Biegetragfähigkeit von der Normalkraft deutlich wird.

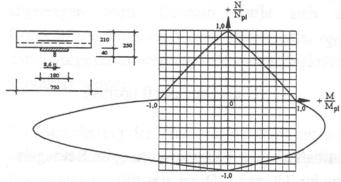


Bild 6: M-N-Interaktion für den oberen Teilquerschnitt des Versuchsträgers P1 und P2

Während im Zugbereich (obere Hälfte des Diagramms) die plastische Biegetragfähigkeit ungefähr linear mit der Normalkraft abnimmt, wird sie durch eine gleichzeitig vorhandene Druckkraft z.T. erheblich gesteigert. Für den unteren Teilquerschnitt (Stellen ③ und ④) gestaltet sich die Berechnung insofern einfa-

cher, als (mit Ausnahme von Kammerbetonträgern) die Tragfähigkeiten von T- und I-Querschnitten aus Baustahl allein bestimmt wird.

Der Einfluß der Querkraft auf die Biegetragfähigkeit wird nach nationalen Normen rechnerisch durch die Reduktion der Stegdicke s erfaßt:

$$s_{red} = s \cdot \sqrt{1 - \left(\frac{V}{V_{pl}}\right)^2}$$

Dies hat - im Gegensatz zur Abminderung der Fließspannung - den Vorteil, daß mit konstanter Streckgrenze f_y gerechnet werden kann, stimmt aber in dieser Form nicht ganz mit dem Eurocode 4 [1] überein.

Im Verbundbau wird die Querkraft rechnerisch üblicherweise dem Stahlträgersteg zugeordnet (vgl. u.a. Bild 3 in [4]). Diese Näherung führt bei Trägern mit Stegausschnitten zu Ergebnissen, die im Vergleich mit Traglastversuchen z.T. weit auf der sicheren Seite liegen. Außerdem wird in Traglastversuchen häufig ein Schubversa-

gen der Betonplatte beobachtet und für das Versagen maßgebend. Insbesondere bei großen Stegausschnitten und bei Verbundträgern mit dicken Vollplatten stellt das Mitwirken des Betongurts bei der Abtragung der Querkraft einen wesentlichen Traganteil dar. So liegt bei den Versuchen A1-A3 und C1-C3 der rechnerische Anteil der Querkrafttragfähigkeit der Betonplatte V_c bezogen auf die Gesamtquerkraft V bei ca. 50%. Die Schubtragfähigkeit in den Versuchen wurde dabei nach Abschnitt 4.3.2, Eurocode 2 [2] (ohne Teilsicherheitsfaktoren) berechnet:

$$\begin{split} V_c &= (\tau_c \cdot k \cdot (1, 2 + 40 \cdot \rho_l) + 0, 15 \cdot \sigma_{cp}) \cdot b_w \cdot d \\ & \text{mit} \quad b_w = b_{m,l} \\ & k = 1, 6 - d \geq 1 \\ & \rho_l = \frac{A_{sl}}{b_w \cdot d} \leq 0,02 \\ & \sigma_{cp} = \frac{N}{A_c} \end{split} \qquad \text{(N als Druckkraft positiv)}$$

wobei A_{sl} = Querschnittsfläche der Längsbewehrung im Betongurt σ_{cp} = Spannung im Betongurt (Druck positiv)

Dies Vorgehen hat den Vorteil, daß eine Vielzahl von Parametern berücksichtigt werden kann. Herauszuheben ist dabei die Abhängigkeit der Schubtragfähigkeit von einer gleichzeitig vorhandenen "globalen" Drucknormalkraft $N_{\rm g}$.

Infolge der Sekundärmomente M[®] und M[®] im oberen Teilquerschnitt entsteht zwischen dem Betongurt und dem Obergurt des Stahlträgers lokaler Horizontalschub. Dieser Schub, der sich aus den Normalkraftanteilen der Biegespannungen im Betongurt errechnet, muß im Ausschnittsbereich von den Kopfbolzen übertragen werden. Wie FEM- und Vergleichsberechnungen gezeigt haben, können aufgrund einer gewissen Auflagertiefe der Restquerschnitte im ungeschwächten Verbundquerschnitt mehr Kopfbolzen bei der Schubabtragung mitwirken, als direkt über dem Ausschnitt vorhanden sind. Wegen der unterschiedlichen Steifigkeit des Betongurts unterscheidet sich die Auflagertiefe und somit die Dübelanzahl bei globaler positiver bzw. negativer Momentenbeanspruchung. Bei den in den Versuchen gewählten, äquidistanten Dübelabständen können im positiven Momentenbereich rechts und links des Ausschnitts jeweils 2, im negativen jeweils 1 zusätzlicher Dübel (oder Dübelpaare) rechnerisch angesetzt werden.

Nicht nur Querkräfte in der Betonplatte, sondern auch Zug in den Kopfbolzen sind Tragwirkungen, die bei der Bemessung von Verbundträgern mit konstanten Querschnitten ohne Stegausschnitte planmäßig keine Rolle spielen. Der Bolzenzug bei Trägern mit Stegausschnitten entsteht durch das Hochhängen der Querkraft in die Betonplatte auf der lastnahen Ausschnittsseite (Stelle ②). Die Zugbeanspruchung wird dadurch noch verstärkt, daß die steife Betonplatte die großen Verformungen des Stahlträgers infolge der Ausbildung von plastischen Gelenken nicht ohne weiteres mitmachen kann. Angesichts des sehr komplexen Beanspruchungszustands an der Stelle ② konnte jedoch nicht abschließend geklärt werden, wie groß die zusätzliche Zugbeanspruchung in den Kopfbolzen tatsächlich ist, weil nicht klar ist, wie groß der Anteil der Querkraft ist, der schon von vornherein vom Betongurt abgetragen wird. Deshalb ergibt sich der Zug aus der rechnerischen Querkrafttragfähigkeit V_c der Betonplatte, es müssen dafür i.a. zusätzliche Dübel dafür vorgesehen werden, und deren Zugkräfte müssen im Betongurt angemessen verankert werden.

Die Berechnung der Tragfähigkeit läuft auf eine Iterationsrechnung hinaus, die mit Hilfe des EDV-Programms "TMA" durchgeführt wurde [6, 8]. Der Algorithmus des Berechnungsverfahrens ist in Form eines vereinfachten Flußdiagramms in Bild 7 dargestellt.

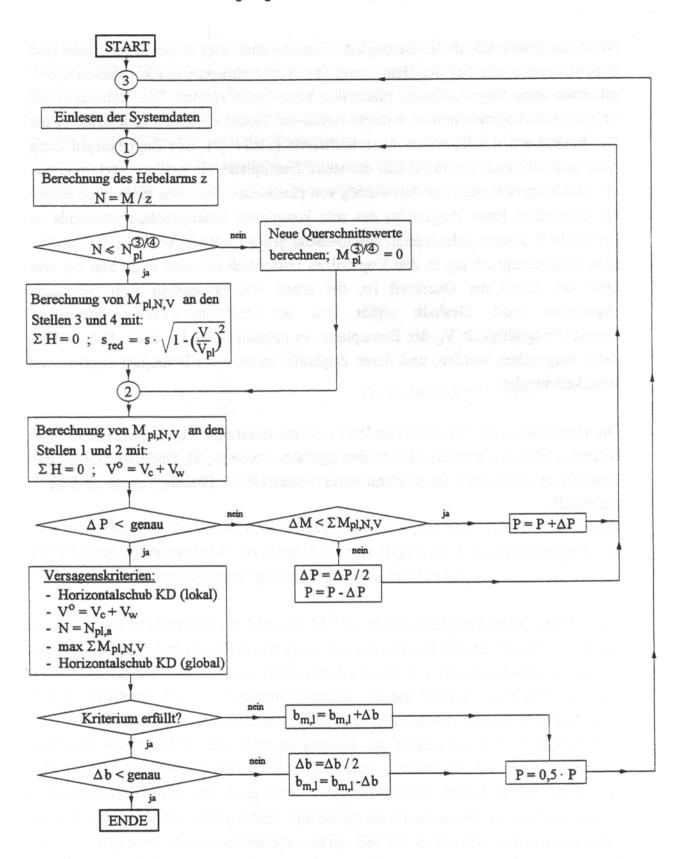


Bild 7: Flußdiagramm (aus [6]) zur Berechnung der Tragfähigkeit

Die Tragfähigkeit ist genau dann erreicht, wenn eines der folgenden Versagenskriterien erfüllt ist:

Kurzbezeichnung Bedeutung

KD (lokal): Der lokale Horizontalschub V_{L,1} kann durch die Kopfbolzen im

Ausschnittsbereich nicht mehr aufgenommen werden.

KD (global): Die globale Schubbeanspruchung, überlagert mit der lokalen,

wird traglastbestimmend. Betrachtet wird der Bereich zwischen

dem lastnahen Ausschnittsrand und dem Auflager.

V° = V_c+V_w: Die maximale Querkrafttragfähigkeit (in der Betonplatte V_c und

im Stahlsteg Vw) des oberen Teilquerschnitts ist erreicht.

N = N_{pl,a}: Der Nettoquerschnitt des Stahlträgers ist vollplastisch durch Zug

ausgenutzt (bei Trägern mit großem M/V-Verhältnis).

max ∑M[⊕]_{pl,N,V}: Die Summe der Biegetragfähigkeiten in den Ecken ⊕ bis ⊕ wird

erreicht (vollständige "lokale" Momentenumlagerung).

3.4 Vergleich: Versuch - Theorie

Die Ergebnisse der Vergleichsberechnungen sind in Bild 8 dargestellt. Für die einzelnen Versuche ist durch unterschiedliche Symbole die rechnerische Versagensart kenntlich gemacht. Es wurden außer den 15 Versuchen des AiF-Projektes [6] und den 14 aus dem DFG-Projekt [8] auch 15 nordamerikanische Versuche [9] nachgerechnet. Wie Bild 8 zeigt, liegen die berechneten Traglasten P_{calc} recht nah bei den Versuchstraglasten P_{exp}.



Bild 8: Vergleich zwischen Versuchs- und rechnerischen Traglasten (29 Versuche aus [6] und [7] sowie 15 nordamerikanische Versuche [9])

Die statistische Auswertung aller 44 Versuche liefert für das Verhältnis P_{calc}/P_{exp} einen Mittelwert von 0,982 bei einer Standardabweichung von 0,070. Das bedeutet eine sehr gute Übereinstimmung zwischen dem Berechnungsmodell und den Versuchstraglasten.

Wird die Ausnutzung der Momentensumme auf 90 % begrenzt, wie es für die Bemessung vorgeschlagen wird, dann liegen die rechnerischen Traglasten der Versuche praktisch alle auf der sicheren Seite. Auf diese Weise kann berücksichtigt werden, daß die oberen Restquerschnitte sich vielleicht doch nicht gleichzeitig vollplastisch beanspruchen lassen.

4. Bemessungsverfahren

Das im Abschnitt 3 dargestellte Rechenverfahren auf der Basis der Stabwerkstheorie wird im folgenden verwendet, um Bemessungshilfen zu erarbeiten. Dem hierzu verwendeten EDV-Rechenprogramm "TMA" liegt das Flußdiagramm zugrunde, das in Bild 7 dargestellt ist. Anstelle der wahrscheinlichen Festigkeiten (für die Versuchsnachrechnung) werden jetzt allerdings Bemessungswerte nach Eurocode 4 [1] verwendet. Außerdem ist berücksichtigt, daß die Momentensumme auf 90% reduziert werden sollte. Stabilitätsnachweise sind in "TMA" bisher nicht enthalten, sie müssen als eigene Versagenskriterien ergänzt werden. Wenn bei der steifenlosen Bauweise der Versuchsbereich nicht verlassen wird, so kann man jedoch davon ausgehen, daß örtliche Instabilitäten nicht maßgebend werden.

Obwohl die Berechnungen auf der Basis des Eurocode 4 erfolgten, dürfte eine nach der Verbundträger-Richtlinie nicht wesentlich davon abweichen, wenn die Tragfähigkeiten M_d und V_d wie folgt umgerechnet werden:

1. Schritt: Schnittgrößen im Gebrauchszustand:

$$M \cong M_d / 1,5$$

 $V \cong V_d / 1,5$

2. Schritt: Schnittgrößen unter rechnerischer Bruchlast nach der Verbundträger-Richtlinie:

$$M_{u} = 1.7 \cdot M$$

$$V_{u} = 1.7 \cdot V$$

Die Rechenergebnisse werden verwendet, um verschiedene Bemessungshilfen zu erstellen:

- Tabellen mit den direkt berechneten Werten und Tragfähigkeiten für Träger aus St 37 und St 52,
- b) M-V-Diagramme für Träger, die z.T. mit denselben Rechenergebnissen gezeichnet wurden und die Interpolation erleichtern sollen,
- c) M-N-Interaktionsdiagramme für die oberen Teilquerschnitte (Verbundquerschnitt, einfachsymmetrisch).

Während sich die Tabellen und M-V-Diagramme für den Träger auf vorgegebene, hoffentlich häufige Problemstellungen beziehen und die lineare Interpolation zulassen, sollen die M-N-Interaktionsdiagramme dazu dienen, auch Sonderfälle zu betrachten, die vielleicht seltener vorkommen.

Im Abschnitt 6 wird die Anwendung dieser Bemessungshilfen an einem Beispiel erläutert. Die erforderlichen weiteren Nachweise im Abschnitt 7 sind zu beachten.

5. Bemessungshilfen

5.1 Allgemeines

In diesem Abschnitt werden verschiedene Hilfen zur Bemessung von Verbundträgern mit großen Stegausschnitten gegeben. Sie wurden eigens für diese Dokumentation aufgestellt und entwickelt. Die Bemessungshilfen unterscheiden sich dabei sowohl im Aufwand als auch in der Genauigkeit, mit der die Tragfähigkeit von Stegausschnitten berechnet werden kann.

Mit dem EDV-Programm "TMA" wurden für den in Abschnitt 5.2 angegebenen Parameterbereich die Bemessungswerte der Tragfähigkeit ermittelt. Bedingt durch die Entwicklungsgeschichte des Tragmodells war eine vollständige Übertragung auf den Eurocode 4 [1] in zwei Punkten nicht möglich. So entspricht die Reduktion der Stegdicke s zur Berücksichtigung der Querkraft und die vergrößerte rechnerische Stegfläche nach der Verbundträger-Richtlinie zur Aufnahme der Querkraft nicht den Regeln des Eurocode 4. Eine komplette Übertragung hätte jedoch zur Folge, daß sich die Ergebnisse der Versuchsnachrechnungen (vgl. Bild 8) im Vergleich zu den Versuchsergebnissen verschlechtern. Daher wurden die Bemessungshilfen mit dem nicht vollständig an den Eurocode 4 angepaßten, aber an vielen Versuchen kalibrierten Tragmodell erstellt und die Momentensumme auf 90 % reduziert. Die Rechenergebnisse sind in Tabellenform (Seite 21-36) und für einen erweiterten M/V-Bereich in Diagrammen (Seite 38-49) wiedergegeben. Mit beiden Bemessungshilfen läßt sich die Tragfähigkeit sehr schnell ermitteln. Die Verwendung der Tabellen erlaubt darüber hinaus eine gezielte Verstärkung der Stegausschnitte, da jeweils die maßgebende Versagensart angegeben ist.

Die Tragfähigkeit ist insbesondere bei unversteiften Stegausschnitten stark abhängig von der des oberen Teilquerschnittes. Dessen Biegetragfähigkeit unter Berücksichtigung einer gleichzeitig angreifenden Normalkraft ist in Bild 6 dargestellt. M-N-Interaktionsdiagramme, die als polygonale Näherung von Hand oder exakter mittels EDV-Programmen aufgestellt wurden, sind eine Hilfe zur Bestimmung der Tragfähigkeit des geschwächten Querschnitts (vgl. [1]).

5.2 Tragfähigkeitstabellen

Die Tabellenwerte geben in Abhängigkeit der Ausschnittsform und -größe die Biege- und Querkrafttragfähigkeiten M_{Rd} und V_{Rd} in Mitte des Ausschnittes für jeweils drei verschiedene M/V-Verhältnisse an. In zwei weiteren Spalten ist dazu die Größe des zusätzlich auftretenden lokalen Horizontalschubes $V_{L,l}$ und die rechneri-

sche Versagensart angegeben. Die Kurzschreibweise entspricht dabei im wesentlichen derjenigen aus Kapitel 3.3 (KD = KD (lokal)).

Grundlagen und Voraussetzungen:

- Die Berechnungen erfolgten auf der Basis des Eurocode 4 [1].
- Für die Stahlträger wird kein Kammerbeton im Öffnungsbereich angesetzt.
- Die Ausschnitte im Trägersteg sind zentrisch zur Schwerachse der Walzträger angeordnet.
- Eine Längsbewehrung in der Betonplatte ist nicht berücksichtigt.
- Die Träger haben eine positive Biegemomentenbeanspruchung.

Parameterbereich:

Folgende Größen werden als konstant vorausgesetzt:

- Global mittragende Breite b_{m,g} nach Eurocode 4: b_{m,g} = 240 cm (mittlerer Spannweitenbereich). Da der Einfluß der globalen mittragenden Breite gering ist, sind die Ergebnisse auch für geringfügig abweichende mitwirkende Breiten ausreichend genau.
- Betonfestigkeit mindestens C 25/30 (das entspricht der Betonfestigkeitsklasse B 35).
- Kopfbolzendübel mindestens 1 Ø 22/150. Die Dübeltragfähigkeit wurde nach der DASt-Richtlinie 104 (Anwendungsrichtlinie für den Eurocode 4) [23] berechnet und beträgt:
 - bei Vollplatten:

98,1 kN und

bei Holoribplatten:

73,6 kN je Dübel bei einreihiger Anordnung.

Variiert wurden:

- Plattendicke: d' = 14 und 20 cm
- Betongurt: als Vollplatte bzw. mit Holoribblech 51/150 (Rippen quer zur Trägerlängsrichtung)
- Stahlprofile: Walzträger der Reihe IPE und HEA, jeweils mit 300 / 400 / 500 und 600 mm Trägerhöhe
- Stahlsorte: Fe 360 (das entspricht St 37) und Fe 510 (das entspricht St 52)
- Ausschnittsform und -größe: Als Rechteck $(a_0=2\cdot h_0)$ mit $h_0/h_a=0.3$ und 0.6; und als Quadrat $(a_0=h_0)$ mit $h_0/h_a=0.5$. Die quadratische Öffnung entspricht dabei in etwa einer runden mit dem Durchmesser $d_0=0.6\cdot h_a$.
- Ausschnitt: Unversteift und versteift. Die Aussteifung der Öffnung erfolgt durch Anordnung von horizontalen Steifen an der Unterkante des Ausschnittes (siehe Bild 9). Die Querschnittsfläche der Steifen entspricht der des Stegaus-

schnittes (A_{Steife}= h₀·s). Die Dicke der Steifen ist gleich der Flanschdicke (b_{Steife}=b_{fl}).

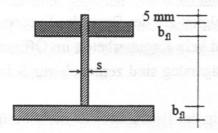
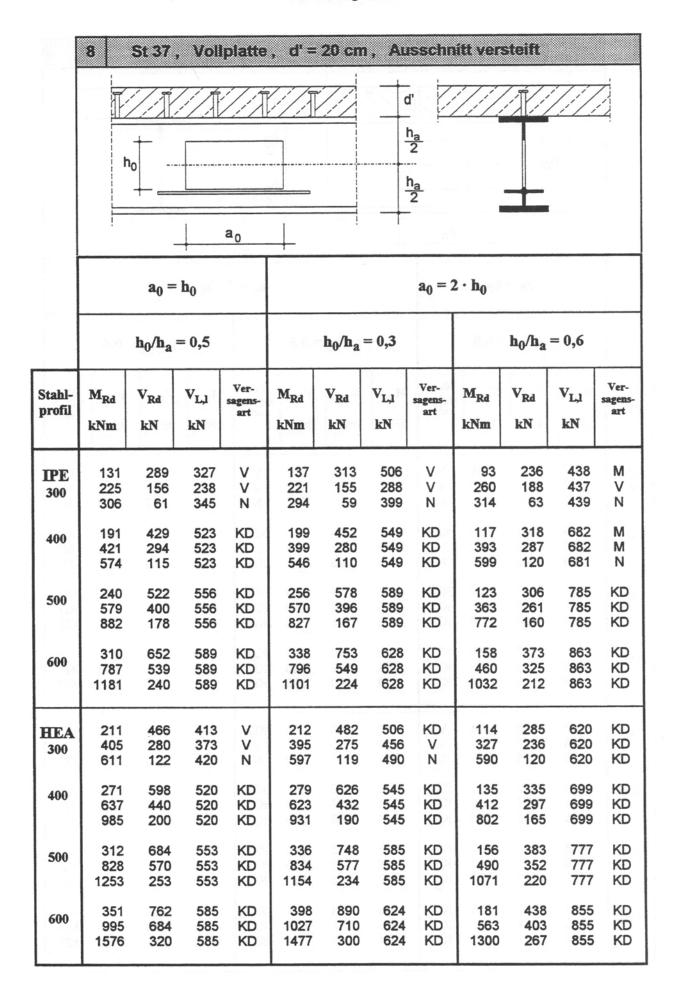


Bild 9: Versteifter unterer Teilquerschnitt

 Beanspruchung: In den Tabellen Seite 21-36 sind für jeden Ausschnitt die Tragfähigkeiten M_{Rd} und V_{Rd} als Bemessungswerte der Tragfähigkeit in Ausschnittsmitte für drei verschiedene M/V-Verhältnisse angegeben. Sie liegen bei etwa M/V = 0,5, 1,5 und 5 m.

	1	St 37	, Ho	loribpl	atte,	d' = 1	4 cm ,	Aus	schnitt	unver	steift	
		4				1/4		d'	1//		1//	Z
		+		V . / / /				⊢ h _a 2				4
		h ₀ -						2				
		750000000000000000000000000000000000000						h _a				
			1	a ₀			1					
		a ₀ =	= h ₀	1 t =	15			a ₀ =	2 · h ₀	d = p	9	
		h ₀ /h _a	= 0,5			h ₀ /h _a	= 0,3			h ₀ /h _a	= 0,6	- Control of the cont
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,1}	Ver- sagens art
IPE	79	176	202	٧	95	217	295	V	42	115	394	М
300	150 224	104 45	160 346	V	168 249	118 50	223 318	N	144 201	106 41	394 394	M
400	119	273	393	KD	140	321	394	М	46	125	394	М
	291 401	204 80	393 393	KD KD	312 446	217 90	394 394	M	165 368	122 75	394 394	M
500	144	324	394	М	181	406	394	М	50	133	394	М
	394 596	275 120	394 394	M	442 599	307 121	394 367	V	179 455	131 94	394 394	M
600	185	406	394	М	241	528	394	М	60	151	394	М
	528 787	367 160	394 394	M	619 856	429 174	394 394	M M	207 602	150 124	394 394	M
HEA	135	294	288	V	151	336	380	KD	64	162	394	М
300	324 486	223 98	304 366	V KD	335 508	232 103	380 380	KD KD	215 438	154 90	394 394	M
400	172	378	390	KD	199	436	394	М	68	169	394	М
	479 701	331 140	390 316	KD V	515 697	356 140	394 320	M V	231 569	165 117	394 394	M
500	200	433	394	М	241	519	394	М	73	178	394	М
	592 919	409 186	394 337	M V	677 937	469 190	394 394	M	246 719	175 147	394 394	M
600	224 677	482	394	M	283	604	394	М	78	185	394	М
	1169	467 237	394 394	M	816 1234	566 250	394 394	M	259 808	184 166	394 394	M

	2	St 37 ,	Holo	oribpla	atte, o	ď = 14	cm,	Auss	chnitt '	verste	ift	
	r							n _a 2	///		<i>[</i>	.N.S.
		_		a ₀	+				00			
		a ₀ =	h ₀		gë Verste		ans Ind	$a_0 = 2$	2 · h ₀	d= ps		
	ů.	h ₀ /h _a	= 0,5	The second secon		h ₀ /h _a	= 0,3	No. occupants of any parameters of a second of a secon		h ₀ /h _a	= 0,6	
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l} kN	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l} kN	Ver- sagens art
IPE 300	104 208 299	224 143 60	204 214 354	V V N	112 202 281	251 140 56	304 270 383	V V KD	63 169 253	151 121 51	369 369 369	M M M
400	166 367 539	363 253 108	393 393 393	KD KD KD	173 355 499	387 246 100	394 394 394	M M M	85 233 446	200 165 92	394 394 394	M M
500	214 515 741	450 352 150	394 394 348	M M V	232 513 690	511 352 140	394 394 394	M M M	110 300 628	244 207 128	394 394 394	M M M
600	283 713 1114	578 483 225	394 394 394	M M M	314 729 1035	683 498 210	394 394 394	M M M	148 396 866	308 268 175	394 394 394	M M M
HEA 300	181 371 552	392 255 111	294 312 366	V	183 361 540	406 249 109	380 380 380	KD KD KD	92 264 499	219 187 100	394 394 394	M M
400	239 573 743	392	390 390 232	KD	250 567 740	549 390 149	394 394 290	M	118 344 692	269 242 188	394 394 394	M M M
500	282 753 1126	515	394 394 394	M	309 766 1050		394 394 394	M	142 421 914	316 294 186	394 394 394	M
600	324 913 1488	623	394 394 394	M	373 951 1397	654		M	171 495 1124			M


	3	St 3	7 , H	plorib	platte,	d' = :	20 cm	, Aus	schnit	t unve	ersteif	
			(4)		THE			ď'	///			Z
		ho	2.42.00					h _a 2				
			+	a ₀				The latest and the la	45			
		a ₀ =	= h ₀					a ₀ =	2 · h ₀	gd = ga		
	3,6	h ₀ /h _a	= 0,5	* ATTENDED MARKET OF THE	8,0	h ₀ /h _a	= 0,3	10 mm	3,1	h ₀ /h _a	= 0,6	
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,i} kN	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art
IPE 300	92 157 253	209 110 51	200 127 350	V V N	107 178 276	249 125 55	281 181 383	V V KD	59 166 241	162 122 49	437 438 438	M V N
400	136 320 454	319 225 92	390 367 393	V V KD	154 339 492	362 240 100	412 412 412	KD KD KD	58 226 397	176 170 81	530 530 530	KD KD KD
500	159 433 661	368 305 133	417 417 417	KD KD KD	195 480 715	449 336 144	442 442 442	KD KD KD	60 243 581	187 185 120	589 589 589	KD KD KD
600	199 575 924	452 403 187	442 442 442	KD KD KD	255 663 920	574 463 188	471 471 471	KD KD KD	68 271 750	208 206 157	648 648 648	KD KD KD
HEA 300	150 332 559	331 230 113	270 238 366	> KD	170 353 576	385 246 117	375 324 380	V V KD	80 276 488	212 201 100	465 465 465	KD KD KD
400	188 520 849	422 362 171	390 390 390	KD KD KD	214 551 885	479 384 180	409 409 409	KD KD KD	83 297 696	224 217 142	524 524 524	KD KD KD
500	216 647 1087	479 450 219	415 415 415	KD KD KD	255 723 1070	565 504 217	439 439 439	KD KD KD	85 313 856	234 230 177	583 583 583	KD KD
600	239 740 1226	529 515 249	439 439 439	KD KD KD	297 869 1279	651 607 260	468 468 468	KD KD KD	86 325 996	243 241 206	642 642 642	KD KD KD

	4	St 37,	Hole	oribpla	itte,	d' = 20	d	-	chnitt	verste	ift	.N.S.N.
	!	a ₀ =	h ₀	a ₀	+		-	$\mathbf{a}_0 = 2$	2 · h ₀	d = es		
	8,5	h ₀ /h _a	= 0,5		£.0	h ₀ /h _a	= 0,3		2,0	h ₀ /h _a	= 0,6	
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l} kN	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art
IPE 300	117 222 334	256 154 67	203 188 368	V V KD	124 213 322	281 150 64	284 221 370	V V N	81 238 346	204 171 70	439 438 438	V V N
400	183 406 598	409 283 120	393 393 393	KD KD KD	199 401 589	449 280 120	412 412 412	KD KD KD	98 286 571	250 208 116	530 530 530	KD KD
500	228 557 894	494 385 180	417 417 417	KD KD KD	246 552 842	555 383 170	442 442 442	KD KD KD	121 355 758	298 255 157	589 589 589	KD KD KD
600	298 762 1180		442 442 442	KD KD KD	327 775 1088	729 534 221	471 471 471	KD KD KD	157 452 1014	364 318 208	648 648 648	KD KD KD
HEA 300	195 401 645	277	274 300 366		203 392 608	459 272 123	380 364 380	V	108 316 586	269 227 120	465 465 465	KD KD KD
400	257 613 1002	423	390 390 390	KD	265 604 948		409 409 409	KD	132 401 785	324 288 161	524 524 524	KD
500	299 800 1237	551	415	KD	324 810 1132	560		KD	154 479 1050	343	583	KD
600	339 966 1550	663	439	KD	387 1001 1467	692		KD	180 554 1277	394	642	KD

	5	St 37	', Vo	llplatt	e, ď	= 14 c	m, A	ussch	mitt un	verste	ift	
	7	// <u>/</u>						d' ha	////			
		h _o -						h _a 2				
				a ₀	+	!			a ⁸			
		a ₀ =	= h ₀	2 - 6				a ₀ =	2 · h ₀	# ex		According you
	3.0	h ₀ /h _a	= 0,5		6,0	h ₀ /h _a	= 0,3		2,0	h ₀ /h _a	= 0,6	
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art
IPE 300	90 151 202	203 105 40	362 219 294	V V N	105 170 234	242 119 47	506 301 298	V V N	50 155 197	138 113 40	438 438 398	M V N
400	125 298 398	287 208 80	523 523 398	KD KD N	148 315 431	338 220 87	549 549 497	KD KD	56 222 375	166 166 77	682 682 682	M M N
500	152 409 620	343 285 125	556 556 556	KD KD	190 459 644	427 319 130	589 589 589	KD KD N	56 212 482	161 159 100	785 785 785	KD KD KD
600	193 550 803	427 383 163	589 589 589	KD KD KD	250 643 883	553 446 180	628 628 628	KD KD KD	65 244 687	183 182 142	863 865 863	KD KD KD
HEA 300	147 324 460	324 223 92	456 409 419	N	157 334 482	348 232 96	506 506 506	KD KD N	71 238 428	181 171 86	620 620 620	KD KD KD
400	180 493 736	395 341 148	520 520 520	KD KD KD	208 529 751	455 365 151	545 545 545	KD KD KD	75 263 605	195 190 124	699 699	KD KD KD
500	208 617 994	452 427 200	553 553 553	KD KD KD	250 700 953	542 485 193	585 585 585	KD KD KD	80 283 800	208 206 164	777 777 777	KD KD KD
600	233 710 1181	504 491 240	585 585 585	KD KD KD	293 848 1263	630 589 257	624 624 624	KD KD KD	83 299 927	219 218 191	855 855 855	KD KD KD

	6	St 37 , Vollplatte , d' = 14 cm , Ausschnitt versteift										
		h _o						h _a 2				
		a ₀ =	= h ₀	a ₀		-		a ₀ =	2 · h ₀	d = ge		
	2.0	h ₀ /h _a	= 0,5		$h_0/h_a = 0.3$				3.7	h ₀ /h _a	= 0,6	
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,i}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,1}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art
IPE 300	114 212 286	249 147 57	357 318 323	V V N	122 202 260	273 141 52	507 371 388	V V N	72 207 289	179 149 59	438 438 438	M M N
400	172 375 531	376 259 107	523 523 497	KD KD N	181 363 498	402 252 100	549 549 549	KD KD KD	96 283 540	241 204 110	682 682 682	M M
500	221 530 794	468 363 160	556 556 556	KD KD KD	240 529 729	531 364 148	589 589 589	KD KD KD	116 328 693	271 231 142	785 785 785	KD KD KD
600	292 735 1135	600 500 230	589 589 589	KD KD KD	323 753 1047	708 516 212	628 628 628	KD KD KD	153 429 950	340 297 194	863 863 863	KD KD KD
HEA 300	192 387 538	420 266 108	465 487 485	V KD N	189 365 522	421 252 105	506 506 506	KD KD KD	99 281 504	238 200 101	620 620 620	KD KD KD
400	248 585 865	537 401 173	520 520 520	KD KD KD	258 581 830	569 400 167	545 545 545	KD KD KD	125 371 743	295 263 152	699 699 699	KD KD KD
500	291 773 1137	628 529 230	553 553 553	KD KD KD	318 787 1068	697 542 216	585 585 585	KD KD KD	149 453 988	347 321 202	777 777 777	KD KD KD
600	333 940 1531	710 642 310	585 585 585	KD KD KD	382 979 1433	840 674 290	624 624 624	KD KD KD	177 531 1216	405 374 248	855 855 855	KD KD KD

	7	St 37	, Vol	lplatte	, d'=	: 20 cr	n, Au	isschi	nitt un	/erstei	ft	
		h _o -		a ₀				h _a 2				. K.N.
		a ₀ =	• h ₀	S = gs				a ₀ =	2 · h ₀	1 = 4		
	à,¢.°	h ₀ /h _a	= 0,5		6.23	h ₀ /h _a	= 0,3		7.0	h ₀ /h _a	= 0,6	
Stahl- profil	M _{Rd} kNm	V _{Rd}	V _{L,1}	Ver- sagens- art	M _{Rd} kNm	V _{Rd}	V _{L,1}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,1}	Ver- sagens- art
IPE 300	107 226 230	245 150 46	328 462 302	V V N	122 229 253	284 156 51	507 506 377	V V N	71 211 233	195 143 47	438 438 438	M M N
400	145 325 439	341 229 88	523 462 519	KD V N	167 343 465	390 243 93	549 549 549	KD KD KD	76 322 426	241 240 86	682 682 682	M M N
500	171 454 646	396 319 130	556 556 556	KD KD KD	206 498 696	477 349 141	589 589 589	KD KD KD	63 253 580	196 193 120	785 785 785	KD KD KD
600	210 599 938	477 420 190	589 589 589	KD KD KD	265 685 928	560 479 190	628 628 628	KD KD	69 280 761	216 214 160	863 863 863	KD KD KD
HEA 300	167 333 525	372 230 105	404 302 382	V V N	180 359 551	410 250 110	506 404 462	KD V	86 292 494	228 212 100	620 620 620	KD KD KD
400	202 545 835	453 379 169	520 520 520	KD KD	228 571 864	510 397 176	545 545 545	KD KD KD	86 311 709	235 228 145	699 699	KD KD KD
500	228 680 1100	507 473 221	553 553 553	KD KD	267 748 1086	593 522 220	585 585 585	KD KD KD	87 325 868	244 241 180	777 777 777	KD KD KD
600	251 776 1236	555 541 251	585 585 585	KD KD KD	308 898 1291	678 627 263	624 624 624	KD KD KD	88 336 1022	252 250 212	855 855 855	KD KD

	9	St 52	, Hol	loribp	latte ,	d' = 1	4 cm ,	Aus	schnitt	unvei	steift				
								d'				Z			
	1 1 1	h ₀ -						h _a							
		+	22.5			h _a 2									
			1	a ₀		!									
		a ₀ =	= h ₀					a ₀ =	2 · h ₀			Î			
	1,4	h ₀ /h _a	= 0,5		<i>ξ.</i> 0.	h ₀ /h _a	= 0,3			h ₀ /h _a	= 0,6				
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,1}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art			
IPE 300	115 228 332	257 158 66	288 239 368	>	135 253 359	307 176 72	382 332 383	KD KD	53 179 297	140 130 60	394 394 394	M M M			
400	165 406 596	367 281 120	393 393 393	KD KD	202 441 615	447 304 124	394 394 394	M M M	60 206 437	152 149 90	394 394 394	M M M			
500	206 556 793	449 384 160	394 394 386	M M V	265 637 835	577 439 170	394 394 394	M M M	69 234 627	170 168 129	394 394 394	M M M			
600	268 757 1151	573 522 233	394 394 394	M M M	357 904 1244	765 622 251	394 394 394	M M M	87 284 835	203 201 171	394 394 394	M M M			
HEA 300	190 457 658	411 314 132	366 366 366	KD KD KD	209 473 653	455 325 131	380 380 316	KD KD V	82 265 553	196 188 111	394 394 394	M M M			
400	244 674 908	522 463 183	390 390 390	KD KD V	288 739 938	614 508 190	394 394 317	M M V	93 301 785	217 212 160	394 394 394	M M M			
500	288 839 1303	608 575 263	394 394 394	M M M	353 979 1373	744 674 278	394 394 394	M M M	104 334 986	236 233 201	394 394 394	M M M			
600	327 969 1715	685 664 347	394 394 394	M M M	420 1188 1815	878 820 367	394 394 394	M M M	114 361 1118	253 251 228	394 394 394	M M M			

	10	St 52	2, Ho	loribp	latte,	d' = 1	4 cm	, Aus	schnit	t versi	eift					
		h _o -						h _a 2				N. P.				
1		a ₀ =	= h ₀	a ₀		$\mathbf{a_0} = 2 \cdot \mathbf{h_0}$										
	5,6	h ₀ /h _a	= 0,5		E.0	h ₀ /h _a	= 0,3			h ₀ /h _a	= 0,6					
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,i}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art				
IPE 300	154 308 441	331 212 89	292 306 368	A < <	161 295 413	356 204 83	383 383 383	KD KD KD	88 229 426	206 162 87	394 394 394	M M				
400	237 516 697	504 352 140	393 393 278	KD KD V	251 504 673	547 345 135	394 394 339	M M V	119 315 616	266 219 126	394 394 394	M M				
500	310 736 1072	636 498 217	394 394 394	M M M	341 741 978	736 505 198	394 394 394	M M M	160 422 876	338 287 177	394 394 394	M M				
600	416 1035 1628	832 697 328	394 394 394	M M	466 1065 1492	999 723 301	394 394 394	M M M	220 571 1238	440 382 249	394 394 394	M M M				
HEA 300	258 522 648	557 357 130	366 366 181	< 8 A	258 510 634	562 349 127	380 380 223	KD KD V	124 349 616	219 187 100	394 394 394	M M M				
400	345 812 1089	734 553 220	390 390 316	KD KD V	364 813 1048	786 556 211	394 394 393	M M V	168 480 961	269 242 188	394 394 394	M M				
500	411 1080 1638	870 736 330	394 394 394	M M M	456 1107 1538	977 759 310	394 394 394	M M M	208 602 1299	316 294 186	394 394 394	M M				
600	477 1319 2603	995 897 438	394 394 394	M M M	554 1385 2064	1194 949 415	394 394 394	M M M	254 720 1622	371 343 228	394 394 394	M M				

	11	St 52	2, Ho	loribp	latte ,	d' = 2	20 cm	, Aus	schnit	t unve	rsteiff	
		41				15	-	d'	111			
			h _a 2									
	-		_	a ₀			+	2				
		a ₀ =	= h ₀	N P gi				a ₀ = :	2 · h ₀			
	3.0	h ₀ /h _a	= 0,5		1,0	h ₀ /h _a	= 0,3		649	h ₀ /h _a	= 0,6	
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,i}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,1} kN	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art
IPE 300	130 234 459	292 162 76	268 192 368	N < >	153 265 415	353 185 83	383 269 383	KD VD	68 227 343	189 167 70	471 471 471	KD KD KD
400	181 440 672	410 306 136	393 393 393	KD KD KD	217 472 706	491 328 142	412 412 412	KD KD KD	74 271 569	207 201 116	530 530 530	KD KD KD
500	221 599 950	494 417 191	417 417 417	KD KD	280 677 937	623 470 190	442 442 442	KD KD KD	81 300 723	226 223 150	589 589 589	KD KD KD
600	283 807 1210	621 560 247	442 442 442	KD KD	371 951 1316	813 658 268	471 471 471	KD KD KD	95 348 994	260 257 206	648 648 648	KD KD KD
HEA 300	215 497 804	471 342 163	366 362 366	KD > KD	227 500 825	501 346 167	380 380 380	KD KD	99 330 720	250 237 147	465 465 465	KD KD KD
400	262 722 1153	568 498 231	390 390 390	KD KD KD	305 780 1126	661 538 226	409 409 409	KD KD KD	107 368 874	272 265 180	524 524 524	KD KD KD
500	305 901 1397	655 621 283	415 415 415	KD KD	369 1035 1427	793 716 290	439 439 439	KD KD	116 401 1154	293 289 237	583 583 583	KD KD KD
600	343 1037 1753	734 715 355	439 439 439	KD KD KD	435 1254 1866	927 869 378	468 468 468	KD KD	122 427 1331	311 308 274	642 642 642	KD KD KD

	12	St 52	2, Ha	loribp	latte ,	d' = 2	20 cm	, Aus	schnit	t verst	eift	
	$\begin{array}{c c} & d' \\ \hline h_a \\ \hline 2 \\ \hline \end{array}$											
		a ₀ =	• h ₀					a ₀ = :	2 · h ₀	v		
	8,0	h ₀ /h _a	= 0,5		8.18	h ₀ /h _a	= 0,3		8.9	h ₀ /h _a	= 0,6	
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd} kNm	V _{Rd}	V _{L,1} kN	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art
IPE 300	167 332 498	364 230 100	273 281 368	>	178 317 480	401 221 97	383 326 383	KD V KD	100 276 484	250 199 100	471 471 471	KD KD KD
400	253 555 861	548 382 173	393 393 393	KD KD KD	283 558 838	620 385 169	412 412 412	KD KD KD	133 370 708	319 264 146	530 530 530	KD KD KD
500	326 782 1131	684 534 229	417 417 417	KD KD KD	356 783 1040	782 538 211	442 442 442	KD KD KD	172 479 1011	393 335 207	589 589 589	KD KD KD
600	433 1088 1705	882 737 346	442 442 442	KD KD KD	481 1118 1570	1047 763 318	471 471 471	KD KD KD	229 629 1391	497 433 283	648 648 648	KD KD KD
HEA 300	281 563 908	614 388 183	366 366 366	KD KD V	276 542 859	610 374 173	380 380 380	KD KD KD	141 402 808	336 286 162	465 465 465	KD KD KD
400	364 862 1243	783 590 250	390 390 390	KD KD V	381 859 1191	833 590 240	409 409 409	KD KD KD	182 537 1081	423 380 221	524 524 524	KD KD KD
500	429 1142 1682	920 780 340	415 415 415	KD KD KD	473 1168 1588	1027 802 321	439 439 439	KD KD KD	220 662 1441	503 466 294	583 583 583	KD KD KD
600	494 1391 2257	1045 949 455	439 439 439	KD KD KD	570 1456 2127	1244 1000 430	468 468 468	KD KD KD	263 779 1781	591 546 363	642 642 642	KD KD KD

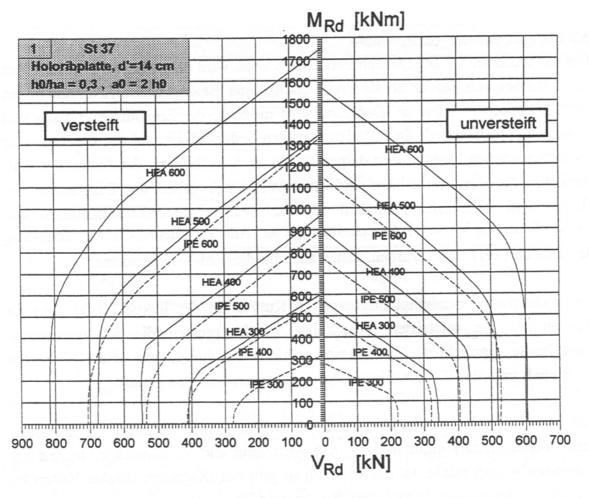
	13	St 5	2, Vo	ollplat	te, d'	= 14 c	m, A	\usscl	mitt u	iverst	eift				
						d' h									
		h ₀				$\frac{h_a}{2}$									
	a ₀														
		a ₀ =	= h ₀					a ₀ =	2 · h ₀	9 T- 12					
	81.	h ₀ /h _a	= 0,5		Ė, si	h ₀ /h _a	= 0,3			h ₀ /h _a	= 0,6				
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art			
IPE 300	127 229 306	285 159 61	461 325 336	V V N	143 253 342	322 176 68	510 453 398	KD V N	60 197 296	159 144 60	628 628 497	KD KD N			
400	172 414 582	381 286 117	523 523 523	KD KD	210 451 609	466 311 122	549 549 549	KD KD	66 236 493	177 173 101	706 706 706	KD KD KD			
500	213 573 845	467 396 170	556 556 556	KD KD	274 656 837	600 452 170	589 589 589	KD KD	75 270 685	200 197 141	785 785 785	KD KD KD			
600	277 781 1179	595 539 240	589 589 589	KD KD KD	367 930 1282	791 641 260	628 628 628	KD KD KD	92 322 931	236 234 192	863 865 863	KD KD KD			
HEA 300	195 465 678	421 319 137	487 487 487	KD KD KD	218 480 688	473 329 140	506 506 506	KD KD N	88 289 597	215 205 120	620 620 620	KD KD KD			
400	252 691 999	538 474 200	520 520 520	KD KD KD	297 756 1002	634 519 202	545 545 545	KD KD KD	100 334 832	243 237 170	699 699	KD KD KD			
500	296 867 1335	628 595 270	553 553 553	KD KD KD	363 1010 1385	769 696 280	585 585 585	KD KD KD	111 372 1086	268 264 223	777 777 777	KD KD KD			
600	336 1005 1731	708 690 350	585 585 585	KD KD KD	430 1231 1833	905 851 370	624 624 624	KD KD KD	119 402 1253	288 286 257	855 855 855	KD KD KD			

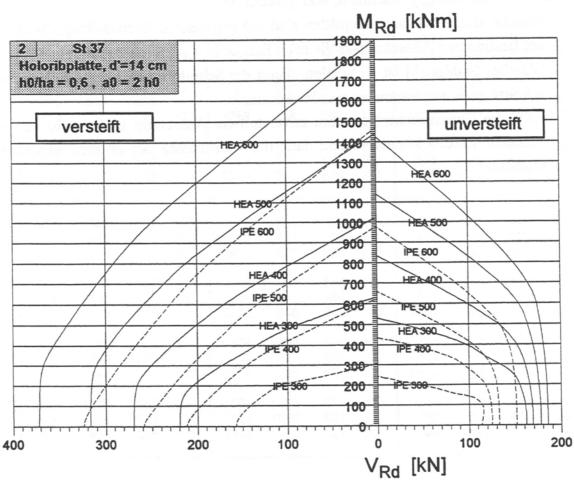
	14	St 52	2, Vo	llplatt	e, d'	= 14 c	m, A	ussch	mitt ve	rsteift		
		h _o -		a ₀				d' h _a 2 h _a 2				
	$\mathbf{a_0} = \mathbf{h_0} \qquad \qquad \mathbf{a_0} = 2 \cdot \mathbf{h_0}$											
	8,6	h ₀ /h _a	= 0,5		2,5	h ₀ /h _a	= 0,3		6,6	h ₀ /h _a	= 0,6	
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,1} kN	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art
IPE 300	164 319 411	357 220 82	473 477 412	V V N	167 293 396	369 204 79	510 510 441	KD KD N	92 244 400	220 173 81	628 628 628	KD KD KD
400	243 525 748	518 359 150	523 523 523	KD KD KD	258 514 701	562 353 141	549 549 549	KD KD KD	125 339 657	289 238 135	706 706 706	KD KD KD
500	318 753 1085	656 511 220	556 556 556	KD KD	350 760 995	758 519 201	589 589 589	KD KD	167 452 946	367 312 193	785 785 785	KD KD KD
600	425 1060 1652	855 715 333	589 589 589	KD KD	476 1096 1532	1025 745 310	628 628 628	KD KD	226 606 1328	473 412 269	863 863 863	KD KD KD
HEA 300	263 532 768	568 364 166	487 487 487	KD KD KD	266 517 739	581 354 150	506 506 506	KD KD KD	130 368 660	301 259 133	620 620 620	KD KD KD
400	353 832 1178	751 567 237	520 520 520	KD KD KD	373 834 1091	806 570 220	545 545 545	KD KD	175 508 1019	394 355 207	699 699 699	KD KD KD
500	421 1112 1650	891 757 333	553 553 553	KD KD	466 1144 1554	1002 784 314	585 585 585	KD KD	215 636 1380	478 444 280	777 777 777	KD KD KD
600	487 1362 2210	1019 927 445	585 585 585	KD KD KD	565 1433 2087	1225 982 421	624 624 624	KD KD KD	260 757 1720	568 525 349	855 855 855	KD KD KD

	15	St 52	2, Vo	liplatt	e, d'	= 20 c	m, A	ussch	nitt un	verste	ift	
	St 52, Vollplatte, d' = 20 cm, Ausschnitt unversteift d' h _a 2 h _a 2										.K.Y.	
	$\mathbf{a}_0 = \mathbf{h}_0 \qquad \qquad \mathbf{a}_0 = 2 \cdot \mathbf{h}_0$											
	$\mathbf{h_0/h_a} = 0.5$			$h_0/h_a = 0.3$				$h_0/h_a = 0.6$				
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,1}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,1} kN	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art
IPE 300	1467 262 347	330 182 69	403 282 338	V V N	162 268 382	374 188 76	510 341 426	KD V N	74 232 324	205 171 65	628 628 628	KD KD
400	194 453 642	440 317 129	523 523 523	KD KD KD	229 478 693	518 333 140	549 549 549	KD KD KD	77 283 556	217 210 113	706 706 706	KD KD KD
500	233 622 933	522 433 188	556 556 556	KD KD KD	291 698 9646	651 484 195	589 589 589	KD KD KD	83 311 728	235 232 151	785 785 785	KD KD
600	294 834 1213	646 579 247	589 589 589	KD KD KD	382 976 1326	840 675 270	628 628 628	KD KD KD	97 359 1016	269 266 211	863 863 863	KD KD KD
HEA 300	225 502 792	496 347 158	487 451 487	KD > Z	242 515 800	535 356 161	506 506 506	KD KD KD	104 347 680	263 249 140	620 620 620	KD KD
400	275 750 1167	599 517 237	520 520 520	KD KD KD	318 803 1171	691 554 235	545 545 545	KD KD KD	111 383 874	283 276 180	699 699	KD KD KD
500	317 938 1433	684 647 290	553 553 553	KD KD KD	381 1063 1430	821 735 290	585 585 585	KD KD KD	118 414 1180	304 300 243	777 777 777	KD KD KD
600	354 1077 1774	761 744 360	585 585 585	KD KD	446 1287 1879	955 892 380	624 624 624	KD KD KD	124 439 1364	321 318 281	855 855 855	KD KD KD

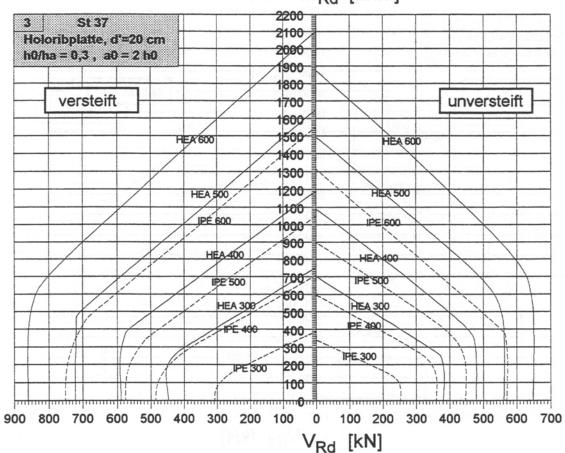
	16	St 52	, Vol	platte	, d'=	20 cm	ı, Au	sschr	itt ver	steift				
	h			a ₀			d'	1/				Y.Y.Y.		
		a ₀ =	h ₀	- 6		$\mathbf{a_0} = 2 \cdot \mathbf{h_0}$								
	$\mathbf{h_0/h_a} = 0.5$				$h_0/h_a = 0.3$				$h_0/h_a = 0.6$					
Stahl- profil	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art	M _{Rd}	V _{Rd}	V _{L,l}	Ver- sagens- art		
IPE 300	182 334 453	400 231 90	414 352 391	V V N	186 319 444	420 223 89	510 412 426	KD V N	106 289 452	265 209 91	629 629 629	KD KD KD		
400	264 574 842	574 396 170	523 523 523	KD KD KD	278 557 796	615 385 160	549 549 549	KD KD KD	136 379 728	329 271 150	706 706 706	KD KD KD		
500	338 805 1159	711 551 235	556 556 556		367 804 1050	806 553 214	589 589 589	KD KD KD	174 487 1029	402 343 211	785 785 785	KD KD		
600	444 1115 1712	756	589	KD	492 1142 1579	780	628 628 628	KD	230 638 1412	441	863	KD		
HEA 300	291 580 915	399	487	KD	292 552 875	381	506	KD	146 415 819	295	620) KD		
400	378 888 1342	608	520) KD	395 880 1222	605	545	KD.	185 549 110	389	699	9 KD		
500	442 1177 1707	1 80	0 55	3 KD	484 1194 1617	4 820	585	5 KD	223 673 1463	3 47	5 77 9 77	7 KD 7 KD		
600	500 142 230	2 97	1 58	5 KD	582 1484 214	4 1020	62	4 KD		0 55	5 85	5 KD		

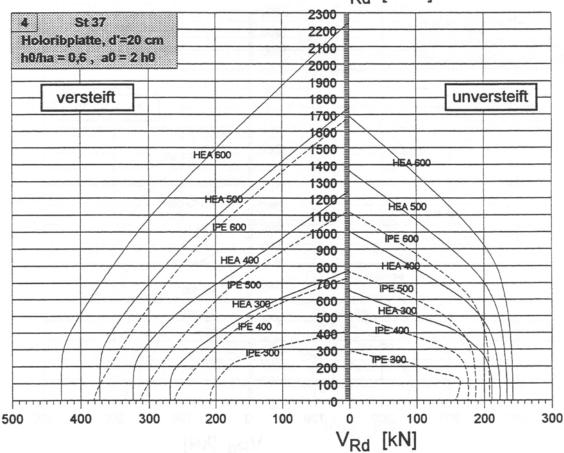
5.3 M-V-Bemessungsdiagramme

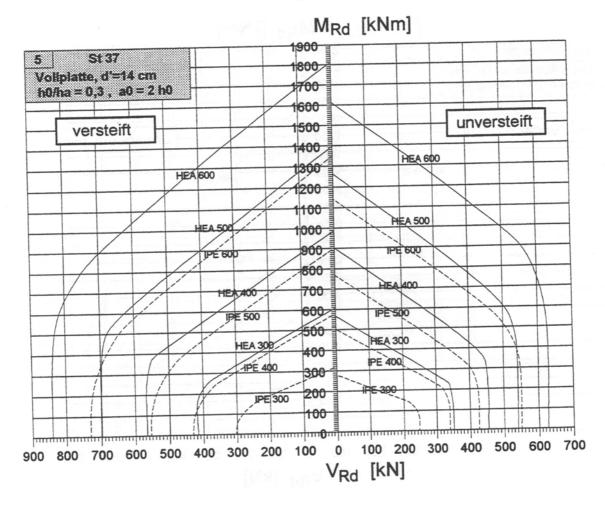

Der in Abschnitt 5.2 angegebene Parameterbereich wird dahingehend erweitert, daß die Tragfähigkeit für mehr als drei verschiedene Beanspruchungskombinationen M/V berechnet worden ist. Dadurch ist es möglich, die Ergebnisse grafisch und damit sehr übersichtlich darzustellen. Auf den Seiten 38-49 sind die Ergebnisse in 24 verschiedenen Diagrammen dargestellt. Je nach Ausbildung der Platte, der Plattendicke, der Ausschnittshöhe und Ausschnittslänge geben die Diagramme die Biege- und Querkrafttragfähigkeit für die Beanspruchungskombinationen von M/V=0 bis $M/V=\infty$ in Ausschnittsmitte an. Alle Parameter, die zur Erstellung der Tabellen verwendet wurden, gelten auch für diese M-V-Diagramme.

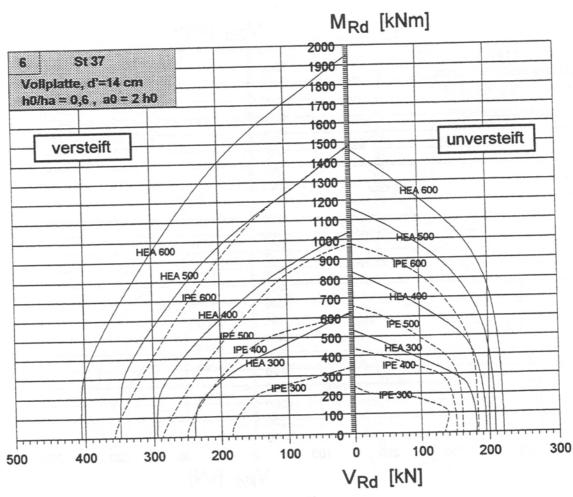

Jedes Diagramm beinhaltet insgesamt 16 Kurven. In der linken Hälfte sind die Kurven für die versteiften Ausschnitte, in der rechten die für unversteifte Ausschnitte gezeichnet. Zur besseren Unterscheidung sind die IPE-Profile gestrichelt und die HEA-Profile mit durchgezogener Linie dargestellt.

Mit Hilfe der M-V-Diagramme lassen sich die Tragfähigkeiten sehr schnell bestimmen. Voraussetzung dafür ist aber, daß Ausschnitt und Verbundträger in den o.g. Parameterbereich fallen. Ist das der Fall, so gibt das Diagramm direkte Hilfen bei der frühen Bemessung, je nachdem, was gesucht ist:

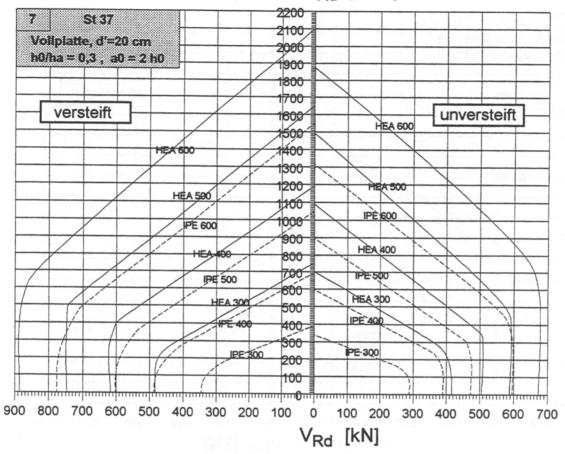

- Welche Bemessungsschnittgrößen sind bei gegebenem Verbundträger und einer bestimmten Ausschnittsgröße nach Eurocode 4 [1] noch aufnehmbar?
- Welches Stahlprofil ist zu wählen, damit die Schnittgrößen trotz des Stegausschnitts noch aufgenommen werden können?
- Falls die Beanspruchungen vom unversteiftem Ausschnitt nicht mehr aufgenommen werden können: reicht dann die Verstärkung des unteren Restquerschnittes?

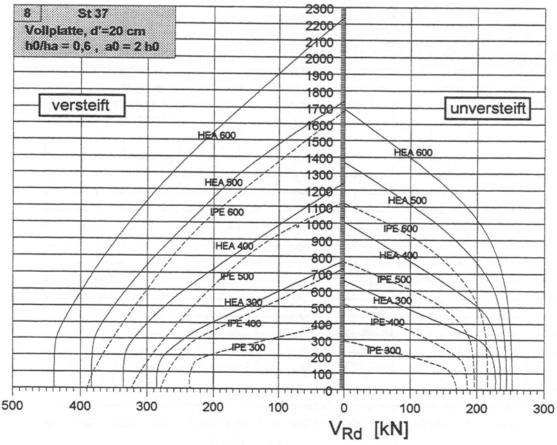

Bemessungshilfen

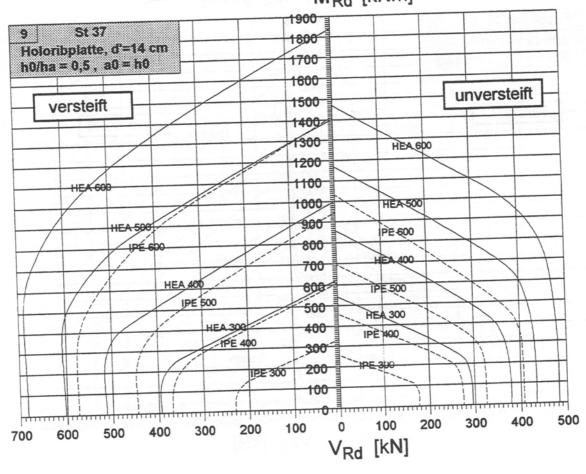


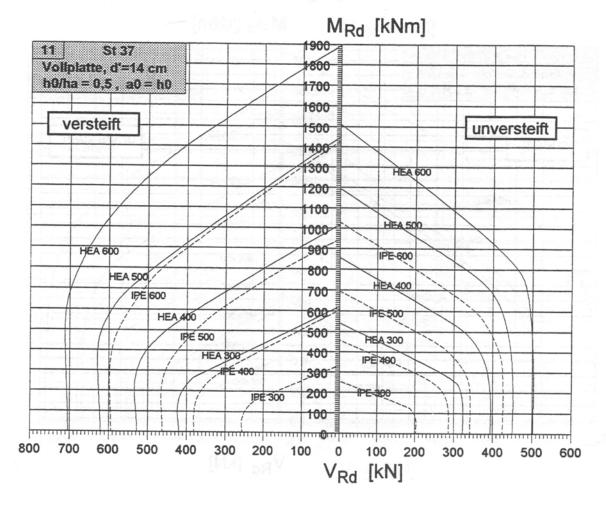


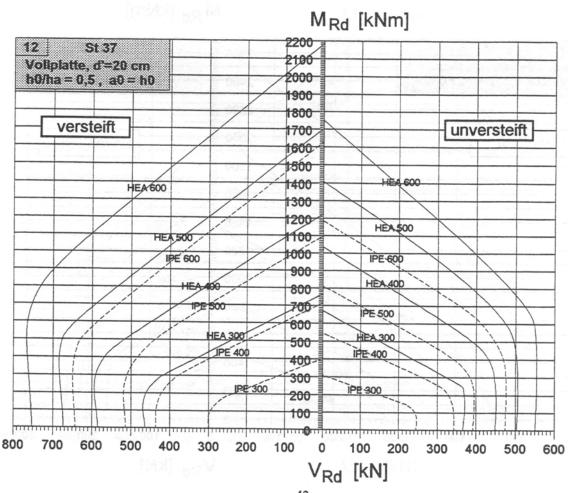
M_{Rd} [kNm]



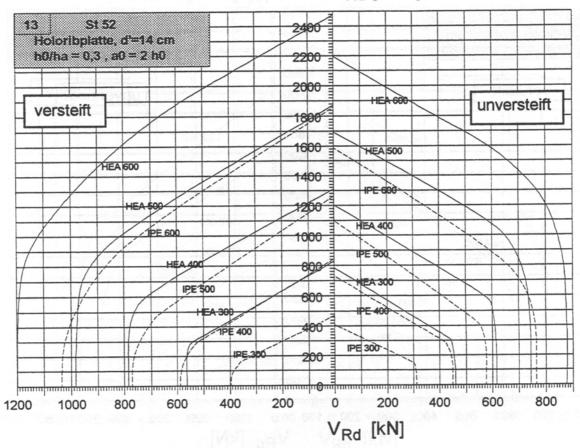


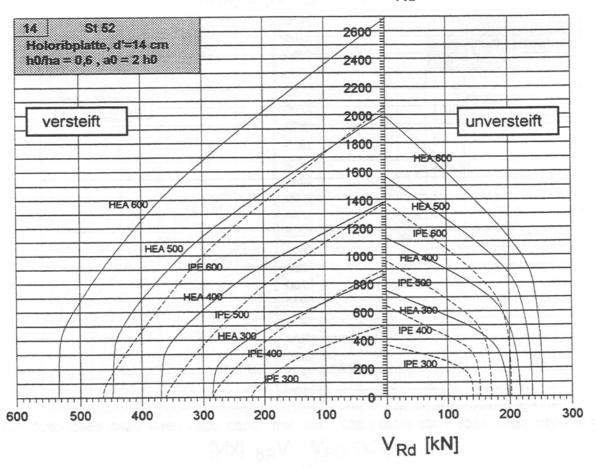

M_{Rd} [kNm]

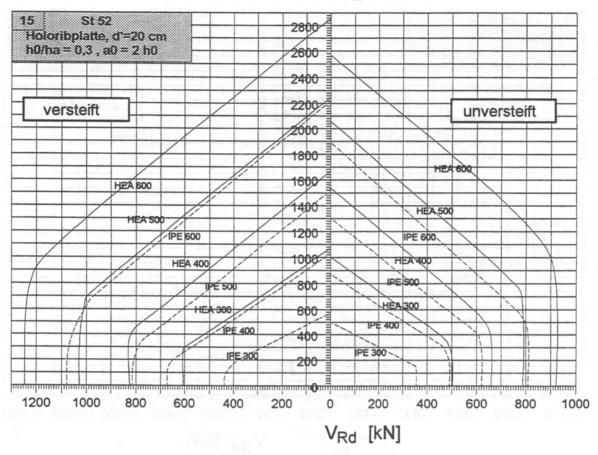

M_{Rd} [kNm]

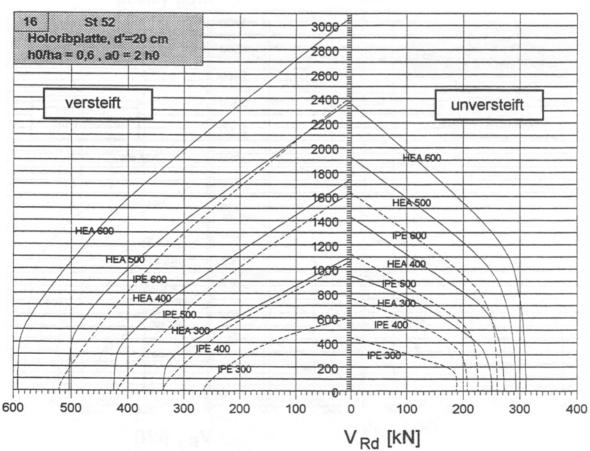


M_{Rd} [kNm]

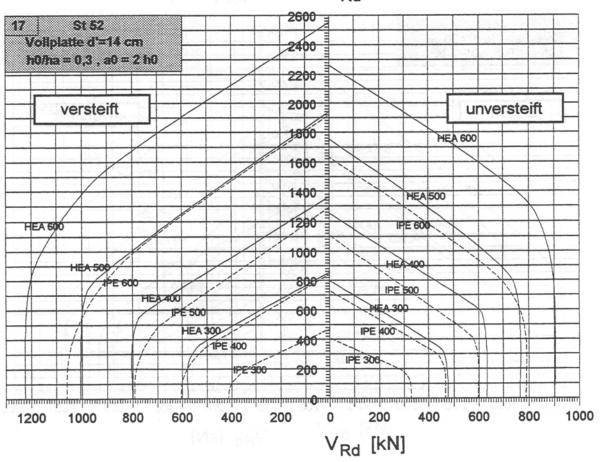




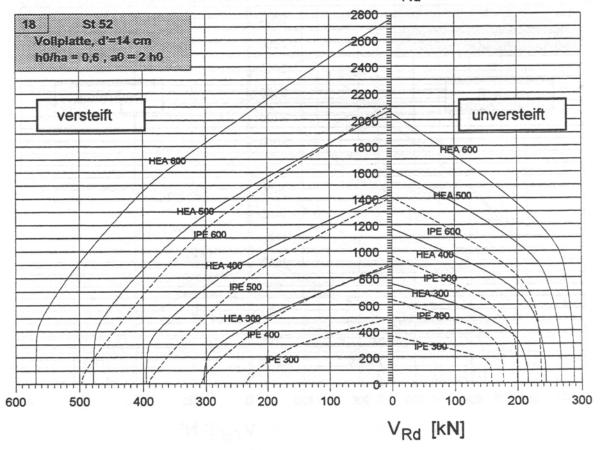

Bemessungshilfen

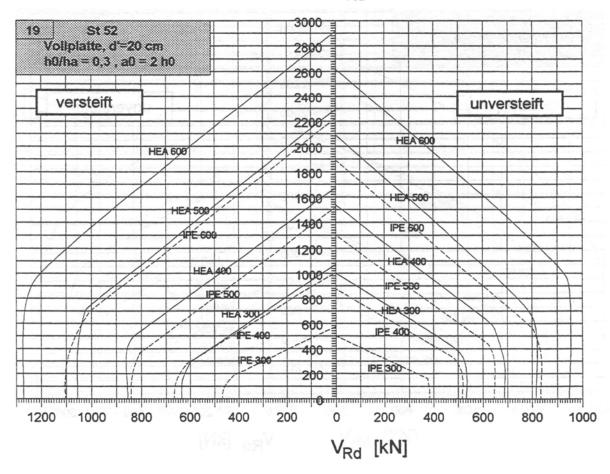


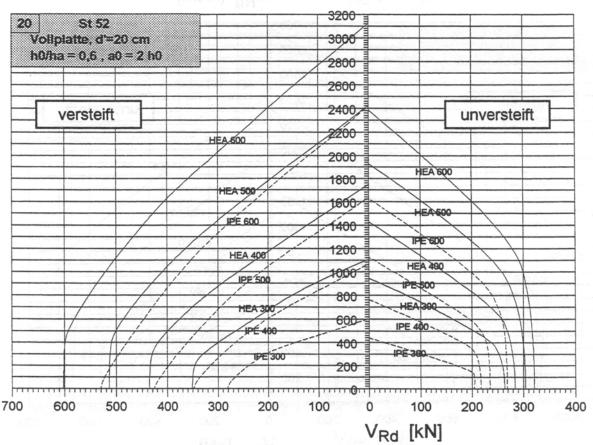
M_{Rd} [kNm]

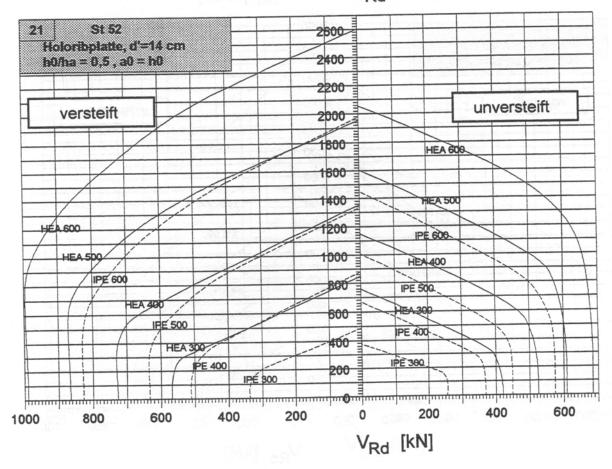


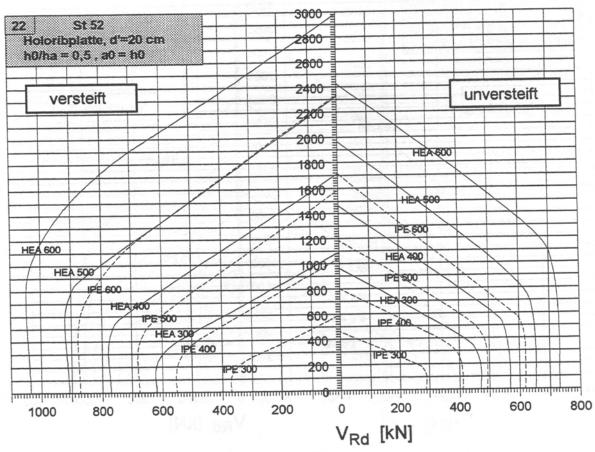
M_{Rd} [kNm]

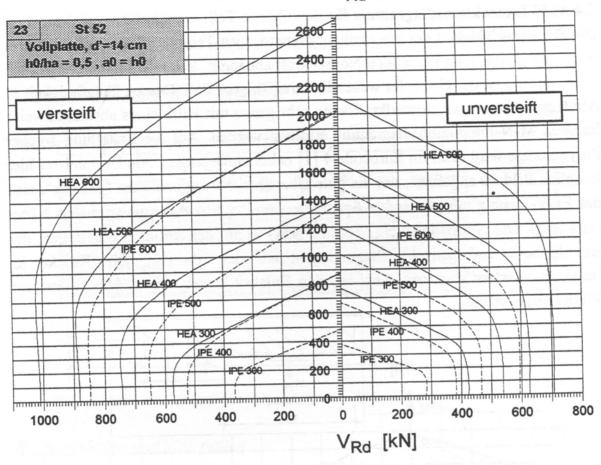


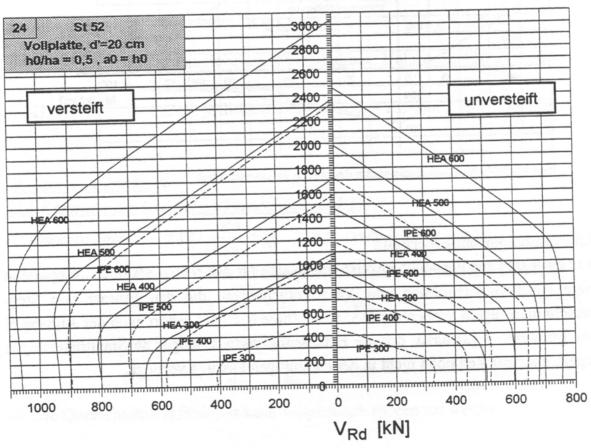

Bemessungshilfen




M_{Rd} [kNm]


M_{Rd} [kNm]


M_{Rd} [kNm]



M_{Rd} [kNm]

M_{Rd} [kNm]

5.4 M-N-Interaktionsdiagramme für den oberen Teilquerschnitt

Die Biegetragfähigkeit der nur einfachsymmetrischen Teilquerschnitte ist sehr stark von einer gleichzeitig wirkenden Normalkraft abhängig. Vor allem bei unversteiften Ausschnitten ist der obere der wesentlich tragfähigere Teil. Dessen Tragfähigkeit in Abhängigkeit von der Normalkraft kann sehr genau mit Hilfe eines abschnittsweise linearen M-N-Interaktionsdiagramms ermittelt werden. Auf die Erstellung solcher Polygonzüge wird auch im Eurocode 4 [1] näher eingegangen. Als Beispiel sei hier lediglich Bild 10 angeführt, das die gute Übereinstimmung zwischen "exakter", also der EDV-Lösung mit plastischer Spannungsverteilung, und der polygonalen Näherung zeigt. Die Normalkraft N (Druck negativ) ist auf der Ordinate abgetragen, das aufnehmbare vollplastische Biegemoment auf der Abszisse. Die Knicke im "exakten" Verlauf stammen dabei aus den Knicken in den verwendeten bilinearen Werkstoffgesetzen.

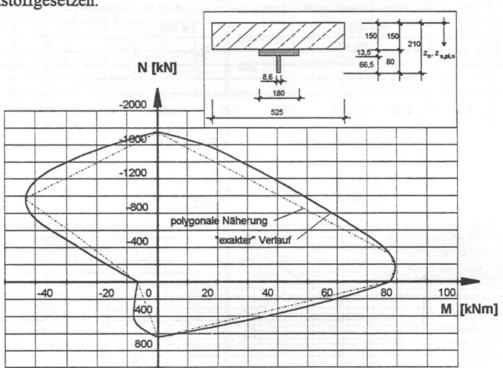


Bild 10: M-N-Interaktionsdiagramm des oberen Teilquerschnittes

5.5 Stahlträger ohne Verbund

Im Gegensatz zur Verbundbauweise finden sich für den reinen Stahlbau ausreichend viele Normen, Richtlinien und Veröffentlichungen, die den Einsatz von Stegausschnitten regeln. Neben der DASt-Richtlinie 015 [15] gehört auch der Anhang N des Eurocode 3 [3] dazu, der die Bemessung von Öffnungen in Stahlträgerstegen regelt, aber zur Zeit noch nicht in der endgültigen Fassung vorliegt.

6. Beispiele

6.1 Berechnung von Hand mit allen Einzelschritten

I. System, Abmessungen und Belastung

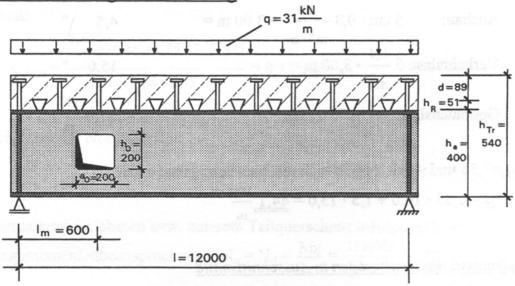


Bild 11: Skizze des Verbundträgers mit quadratischem Ausschnitt (nicht maßstäblich)

II. Querschnitte und Materialien

• Ausschnitt: quadratisch: $a_0 = h_0 = 200 \text{ mm}$; mittig im Stahlträger

• Stahlprofil: IPE 400; Fe 360 (\cong St 37); $f_{y,d} = 24 / 1, 1 = 21,36 \frac{kN}{cm^2}$

• Betonplatte: b = 300 cm; d = 8.9 cm; C = 25/30; $f_{c,d} = 1.42 \frac{kN}{cm^2}$

mit unterbrochener Verbundfuge: Holorib 51/150 quer zur Trägerlängsrichtung

• KD: $1 \varnothing 22$ je Sicke $(\Rightarrow e_q = 0)$; h = 125 mm; $e_l = 150$ mm

III. Bemessungsschritte

III.1 Kontrolle der b/t- und c/t-Verhältnisse nach EC 4

• Flansch: grenz $\frac{c}{t} = 10 \cdot \sqrt{\frac{235}{f_{y,k}}} = \underline{\underline{10}}$ > vorh $\frac{c}{t} = \frac{18/2}{1,35} = \underline{\underline{6,7}}$

• Steg: - Gesamter Träger unter negativer Biegemomentenbeanspruchung: $\operatorname{grenz} \frac{b}{t} = 72 \cdot \sqrt{\frac{235}{f_{y,k}}} = \underline{72} > \operatorname{vorh} \frac{b}{t} = \frac{40 - 2 \cdot 1,35 - 2 \cdot 2,1}{0,86} = \underline{38,5}$

- Steg im Öffnungsbereich: $\operatorname{grenz} \frac{c}{t} = 10 \cdot \sqrt{\frac{235}{6 \cdot t}} = \underline{10} \quad \cong \quad \operatorname{vorh} \frac{c}{t} = \frac{(40 - 20 - 1, 35)/2}{0.86} = \underline{10.8}$

⇒ Die Querschnittstragfähigkeit kann vollplastisch ausgenutzt werden.

III.2 Belastung

g₁: Platte:
$$3,00 \text{ m} \cdot 0,14 \text{ m} \cdot 25 \frac{kN}{m^3} = 10,5 \frac{kN}{m}$$

g₂: Ausbau:
$$5 \text{ cm} \cdot 0.3 \frac{\text{kN}}{\text{m}^2 \cdot \text{cm}} \cdot 3.00 \text{ m} = 4.5$$
 "

p: Verkehrslast:
$$5 \frac{kN}{m^2} \cdot 3,00 \text{ m} = 15,0 \text{ "}$$

$$\Rightarrow$$
 Gebrauchslast: $q = 31,0 \frac{kN}{m}$

Mit γ_G =1,35 und γ_Q =1,5 ergibt sich die Bemessungslast q_d zu:

$$q_d = 1,35 \cdot 16,0 + 1,5 \cdot 15,0 = 44,1 \frac{kN}{m}$$

III.3 Bemessungsschnittgrößen in Ausschnittsmitte

$$\Rightarrow V_d = q_d \cdot (1/2 - l_m) = 44, 1 \cdot (12/2 - 0, 6) = \underline{238 \text{ kN}}$$

$$M_d = q_d \cdot l_m / 2 \cdot (1 - l_m) = 44, 1 \cdot 0, 6/2 \cdot (12 - 0, 6) = \underline{151 \text{ kNm}}$$

III.4 Mittragende Breiten

• global:
$$b_{m,g} = b = \underline{300 \text{ cm}} \le \frac{10}{4} = \frac{1200}{4} = 300 \text{ cm}$$
 (Deckenträgerabstand)

• lokal:
$$b_{m,1} = 3.5 \cdot d + e_q = 3.5 \cdot 8.9 + 0 = 31.15 \text{ cm}$$

III.5 Normalkräfte in den Teilquerschnitten

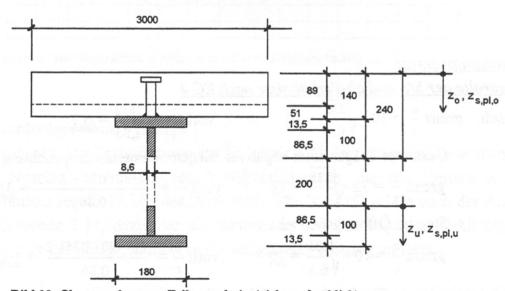


Bild 12: Oberer und unterer Teilquerschnitt (nicht maßstäblich)

· oben:

$$z_{\text{s,pl,o}} = \frac{\frac{8,9^2}{2} \cdot 300 \cdot 1,42 + (1,35 \cdot 18 \cdot 14,675 + 8,65 \cdot 0,86 \cdot 19,675) \cdot 21,36}{8,9 \cdot 300 \cdot 1,42 + (1,35 \cdot 18 + 8,65 \cdot 0,86) \cdot 21,36} = \underline{6,18 \text{ cm}}$$

· unten:

$$z_{s,pl,u} = \frac{\frac{8,65^2}{2} \cdot 0,86 + 1,35 \cdot 18 \cdot 9,325}{8,65 \cdot 0,86 + 1,35 \cdot 18} = \underline{8,15 \text{ cm}}$$

$$\Rightarrow$$
 Hebelarm der Normalkräfte: $z = h_{Tr} - z_{s,pl,o} - h_u + z_{s,pl,u}$
= 54,0 - 6,18 - 10,0 + 8,15 = 45,97 cm

 \Rightarrow Normalkraft im oberen bzw. unterem Teilquerschnitt infolge globaler Biegemomentenbeanspruchung: $N_g = N_d = \frac{M_d}{z} = \frac{151 \text{kNm}}{0,4597 \text{m}} = \underline{328 \text{ kN}}$

III.6 M-N-Interaktion an den Stellen O und O

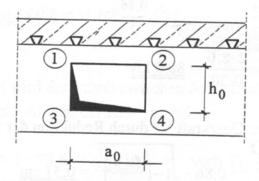


Bild 13: Bezeichnungen im Ausschnittsbereich

Mit Hilfe des Interaktionsdiagramms (Bild 14) für den oberen Teilquerschnitt (siehe Bild 12) ergeben sich folgende Biegetragfähigkeiten:

Anteilige Normalkraft:
$$N_1 = N_g \cdot \frac{b_{m,1}}{b_{m,g}} = 328 \cdot \frac{31,15}{300} = \underline{34 \text{ kN}}$$

Aus der Interaktionskurve (Bild 14) ergibt sich:
$$M^{\odot}_{pl,N,V} = (-) \underline{4.3 \text{ kNm}}$$

$$M^{\odot}_{pl,N,V} = \underline{38.6 \text{ kNm}}$$

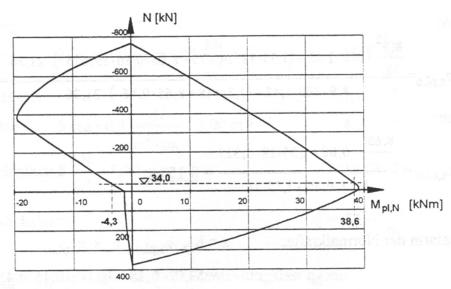


Bild 14: M-N-Interaktionsdiagramm für den oberen Teilquerschnitt

III.7 M-N-Interaktion an den Stellen 3 und 4

Steghöhe h des unteren Restquerschnittes: h = 9,325 cm

$$\begin{split} N_{pl} &= A_{a} \cdot f_{y,d} = 31,74 \cdot 21,36 = \underline{678 \text{ kN}} \\ V_{pl,a} &= h \cdot s \cdot \frac{f_{y,d}}{\sqrt{3}} = 9,325 \cdot 0,86 \cdot \frac{21,36}{\sqrt{3}} = \underline{98,9 \text{ kN}} \\ M^{\textcircled{3}}_{pl} &= M^{\textcircled{4}}_{pl} = h^{2} \cdot \frac{s}{2} \cdot f_{y,d} = 9,325^{2} \cdot \frac{0,86}{2} \cdot 21,36 = \underline{8,0 \text{ kNm}} \\ V^{u} &= \frac{M^{\textcircled{3}}_{pl,N} + M^{\textcircled{4}}_{pl,N}}{a_{0}} = \frac{2 \cdot 8,0}{0,20} = \underline{80,0 \text{ kN}} \end{split}$$

Berücksichtigung der Querkraft Vu durch Reduktion der Stegdicke s:

$$s_{\text{red}} = s \cdot \sqrt{1 - \left(\frac{V^{\text{u}}}{V_{\text{pl}}}\right)^{2}} = 0,86 \cdot \sqrt{1 - \left(\frac{80,0}{98,9}\right)^{2}} = \underline{0,51 \text{ cm}} \implies A_{\text{a,red}} = 0,51 \cdot 9,325 + 18,0 \cdot 1,35 = \underline{29,05 \text{ cm}^{2}}$$

$$\delta_{\text{v}} = \frac{s_{\text{red}} \cdot h}{A_{\text{a,red}}} = \frac{0,51 \cdot 9,325}{29,05} = \underline{0,164}$$

$$N_{\text{pl,red}} = A_{\text{a,red}} \cdot f_{\text{y,d}} = 29,05 \cdot 21,36 = \underline{621 \text{ kN}}$$

Mit
$$M = h \cdot N_{pl,red} \cdot \frac{1}{2} \delta_{v} \cdot \left(1 \pm \frac{N}{N_{pl,red}}\right)$$
 ergibt sich:
 $M^{\circ \circ}_{pl,N,V} = 9,325 \cdot 621 \cdot \frac{1}{2} \cdot 0,164 \cdot \left(1 + \frac{328}{621}\right) = \underline{7,3 \text{ kNm}}$
 $M^{\circ \circ}_{pl,N,V} = 9,325 \cdot 621 \cdot \frac{1}{2} \cdot 0,164 \cdot \left(1 - \frac{328}{621}\right) = \underline{2,3 \text{ kNm}}$

III.8 Gleichgewicht am Stegausschnitt (Zusatzmomente)

Zur Berücksichtigung bestimmter ungünstig wirkender Einflüsse (Dehnungsbegrenzung, Rißbildung, Rechenmodell) sollte beim Nachweis der Tragfähigkeit an den Stellen ① bis ④ die Summe der plastischen Biegetragfähigkeiten nur zu 90% ausgenutzt werden (vgl. [1]). Dadurch verschiebt sich im Vergleich Versuch-Berechnung im Bild 8 das Niveau nach unten auf die sichere Seite:

$$V_d \cdot a_0 \le 0.9 \cdot \sum_{i=1}^{4} M^{(i)}_{pl,N,V} \Leftrightarrow$$
 $238 \cdot 0.20 \le 0.9 \cdot (4.3 + 38.6 + 7.3 + 2.3) \Leftrightarrow$
 $\frac{47.6}{} \cong \frac{47.3}{}$

⇒ Keine Iteration erforderlich!

III.9 Horizontalschubnachweis

 lokal: Bei der lokalen Schubabtragung können alle Kopfbolzen über der Öffnung sowie rechts und links jeweils 2 angesetzt werden:

$$\begin{split} n_l &= \frac{a0}{el} + 4 = \frac{20}{15} + 4 = 5,33 \quad ; \qquad P_{Rd} = 73,6 \text{ kN} \\ n_l \cdot P_{Rd} &= 5,33 \cdot 73,6 = \underline{392,5 \text{ kN}} \quad > \text{ vorh} V_{L,l} = V^{\oplus}_L + V^{\oplus}_L \\ &= 0 + 359 = \underline{359 \text{ kN}} \\ \text{mit} \qquad V^{\oplus}_L &= A_s \cdot \beta_{s,s} = \underline{0 \text{ kN}} \\ V^{\oplus}_L &= N_{pl,c,l} \cdot N_l = 394 \cdot 34 = \underline{359 \text{ kN}} \end{split}$$

 global: Betrachtet wird der Schub zwischen Ausschnittsmitte und Auflager: rechnerische Anzahl der KD: n_g = 5

$$n_g \cdot P_{Rd} = 5 \cdot 73,6 = \underline{368 \text{ kN}} > \text{ vorh } V_{L,1} = N_g + V^{\textcircled{0}}_L$$

= 328 + 0 = $\underline{328 \text{ kN}}$

III. 10 Nachweis der Querkrafttragfähigkeit für den oberen Teilquerschnitt Querkrafttragfähigkeit der Betonplatte V_c nach EC 2:

$$\begin{split} k &= 1,6 \text{ - } d = 1,6 \text{ - } 0,089 = 1,511 \quad \geq \quad 1 \\ \rho_L &= \frac{A_{s,1}}{b_{m,1} \cdot d} = \frac{0}{31,15 \cdot 8,9} = 0 \quad \leq \quad 0,02 \\ \tau_{R,d} &= 0,0263 \text{ kN/cm}^2 \\ \sigma_{cp} &= \frac{N_1}{b_{m,1} \cdot d} = \frac{34}{31,15 \cdot 8,9} = 0,123 \text{ kN/cm}^2 \end{split}$$

$$\Rightarrow V_c = [\tau_{R,d} \cdot k \cdot (1,2+40 \cdot \rho_L) + 0,15 \cdot \sigma_{cp}] \cdot b_{m,l} \cdot d$$

$$= [0,0263 \cdot 1,511 \cdot (1,2+40 \cdot 0) + 0,15 \cdot 0,123] \cdot 31,15 \cdot 8,9$$

$$= \underline{18,3 \text{ kN}}$$

Die Querkrafttragfähigkeit der Betonplatte V_c ist in diesem Beispiel sehr gering. Deshalb bleibt die zusätzliche Anordnung von Kopfbolzendübeln, die diese Kraft über Zug in die Platte einleiten (Hochhängen der Querkraft), unberücksichtigt.

$$\Rightarrow V_{d} = V^{o} = \frac{M_{pl,N,V}^{0} + M_{pl,N,V}^{0}}{a_{0}} = \frac{4,3 + 38,6}{0,20} = \underline{214,5kN}$$

$$V_{R,d} = V^{o}_{pl,a} + V_{c} = 199 + 18 = \underline{217 \ kN}$$

(Berechnung von Vopl,a mit der vergrößerten Stegfläche nach [4].)

Nachweis erfüllt! (Anm.: In Feldmitte müßte der Untergurt zur Aufnahme des Biegemomentes verstärkt werden: Lasche 12x170.)

6.2 Bemessung mit Hilfe der Tabellen

Die Tragfähigkeit ergibt sich mit folgenden Parametern aus Tabelle 1 auf S. 21:

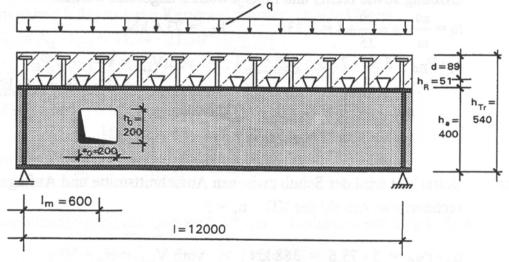


Bild 15: Skizze des Verbundträgers mit quadratischem Ausschnitt (nicht maßstäblich)

- Holoribplatte mit d' = 14 cm,
- unversteifter quadratischer Ausschnitt mit $a_0 = h_0 = 200$ mm,
- Stahlprofil IPE 400 (St 37),
- $h_0/h_a = 200 / 400 = 0.5$,
- Bemessungsschnittgrößen in der Mitte der Öffnung (s. S. 52):

 M_d = 151 kNm und V_d = 238 kN : \Rightarrow M / V = 151 / 238 = 0,63 m. Mögliche Schnittgrößenkombinationen aus Tabelle 1:

$$M_{Rd} = 119 \text{ kNm}$$
 und $V_{Rd} = 273 \text{ kN}$, $M_{Rd} = 291 \text{ kNm}$ und $V_{Rd} = 204 \text{ kN}$.

Nach linearer Interpolation ergibt sich:

$$M_{Rd} = 152 \text{ kNm} > M_d = 151 \text{ kNm}$$
 und

$$V_{Rd} = 259 \text{ kN} > V_d = 238 \text{ kN}$$
.

Der Nachweis der Tragfähigkeit ist erfüllt. Die Schnittgrößen M_{Rd} = 152 kNm und V_{Rd} = 259 kN entsprechen einer zulässigen Last von \underline{q} = 31,4 kN/m im Gebrauchszustand.

6.3 Bemessung mit Hilfe der M-V-Diagramme

Für die in Abschnitt 6.2 aufgezählten Parameter ergibt sich die Tragfähigkeit aus dem M-V-Diagramm Nr. 9 auf Seite 42 (rechte Hälfte) mit

$$h_0 / h_a = 200 / 400 = 0.5$$
 und $a_0 = h_0$:

$$M_{Rd} = 165 \text{ kNm} > M_d = 151 \text{ kN}$$
 und

$$V_{Rd} = 265 \text{ kN} > V_d = 238 \text{ kN}$$
.

Der Nachweis der Tragfähigkeit ist erfüllt. Die Schnittgrößen M_{Rd} = 165 kNm und V_{Rd} = 265 kN entsprechen einer zulässigen Last von \underline{q} = 33,9 kN/m im Gebrauchszustand.

6.4 Berechnung der Tragfähigkeit mit dem EDV-Programm "TMA"

Mit dem Programm "TMA" wird die Tragfähigkeit an den vier Eckpunkten des Ausschnitts iterativ (entsprechend Abschnitt 3.3) berechnet. Zur Berücksichtigung ungünstiger Einflüsse (siehe Kapitel 7) wird (wie bei allen anderen Berechnungen auch) die Biegetragfähigkeit an den Stellen ① bis ④ nur zu 90% ausgenutzt:

Ergebnis:
$$M_{Rd} = 168,9 \text{ kNm} \text{ und } V_{Rd} = 267,8 \text{ kN}$$
.

Dies entspricht einer Gleichstreckenlast im Gebrauchszustand von q = 34.7 kN/m.

Das EDV-Programm wurde ausschließlich für das Forschungsprogramm erstellt und ist nicht im Handel erhältlich.

6.5 Vergleich der Bemessungsverfahren

Alle Ergebnisse stimmen gut miteinander überein. Zur Genauigkeit der einzelnen Verfahren läßt sich folgendes sagen:

- 1. Die mit dem EDV-Programm "TMA" errechnete Tragfähigkeit liegt erwartungsgemäß am höchsten, da sie iterativ ermittelt wurde.
- Die Ergebnisse aus der Handrechnung müßten theoretisch mit denen aus der EDV-Berechnung exakt übereinstimmen. Dies wäre jedoch nur mit einem sehr hohen Rechenaufwand zu erreichen.
- 3. Aus dem M-V-Diagramm Nr. 9 ergibt sich aufgrund von Ableseungenauigkeiten eine etwas geringere Tragfähigkeit. Im allgemeinen ist die Genauigkeit jedoch davon abhängig, inwieweit der Träger mit dem übereinstimmt, für den das Diagramm aufgestellt wurde.

 Die mit den Tabellen ermittelte Tragfähigkeit liegt in etwa in Höhe der Handrechnung. Sie liegt deshalb niedriger als die aus der EDV-Berechnung, weil die Werte durch lineare Interpolation ermittelt wurden.

Verfahren	TMA	Hand- rechnung (vereinfacht)	Diagramm (Nr. 9, Seite 42)	Tabelle (Nr. 1, Seite 21)		
M _{Rd} kNm V _{Rd} kN	168,9 267,8	151 238	165 265	152 259		
q kN/m	34,7 (100%)	31,0 (90%)	33,9 (98%)	31,4 (91%)		

Tabelle 3: Ergebnisse und Vergleich der verschiedenen Bemessungsverfahren

6.6 Mehrere Stegausschnitte hintereinander

Der in Bild 11 dargestellte Träger erhält einen weiteren quadratischen Ausschnitt, der 20 cm neben dem ersten zur Feldmitte hin angeordnet ist (siehe Bild 16). Der Abstand a zwischen den beiden Ausschnitten ist damit so klein, daß eine Wechselwirkung besteht (vgl. Abschnitt 7 und [15]):

$$a = 200 \text{ mm} \le 2 \cdot h_0 = 2 \cdot 200 = 400 \text{ mm}$$

Das erfordert den Einsatz vertikaler Steifen sowie den Nachweis des Pfostens zwischen den Ausschnitten auf Querkraft und Biegung:

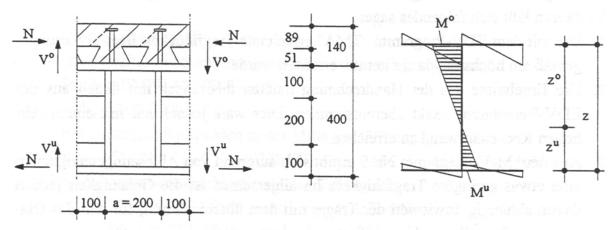


Bild 16: Teilansicht des Verbundträgers mit 2 Ausschnitten

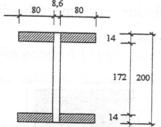
a) Nachweis der Querkraft:

Näherungsweise berechnet sich die Querkraft im Pfosten V_{Pf} wie folgt:

$$V_{Pf} \cong V \cdot \frac{\frac{a_{0,li}}{2} + a + \frac{a_{0,re}}{2}}{z}$$
 mit $V = V^0 + V^u = V_g$ in Pfostenmitte $a_{0,li} = L$ änge des linken Ausschnitts $a_{0,re} = L$ änge des rechten Ausschnitts $a = Ab$ stand zwischen den beiden Ausschnitten $z = He$ belarm der Normalkraft N

$$\Rightarrow V_{Pf} = 229 \cdot \frac{0.1 + 0.2 + 0.1}{0.4597} = \underline{199 \text{ kN}} > V_{pl} = A_{w} \cdot \frac{f_{y,d}}{\gamma_{M1} \cdot \sqrt{3}} = 20 \cdot 0.86 \cdot \frac{21.36}{1.1 \cdot \sqrt{3}} = \underline{193 \text{ kN}}$$

Der Nachweis ist um ca. 3% überschritten. Es sind dementsprechend um 3% geringere Kräfte aufnehmbar.


b) Nachweis der Biegetragfähigkeit:

Annahme (zur sicheren Seite hin): Der Pfosten nimmt die Biegemomente Mo und Mu (siehe Bild 16) alleine auf:

$$M^{o} = V_{Pf} \cdot z^{o} = 199 \cdot 0,3657 = 72,8 \text{ kNm}$$

 $M^{u} = V_{Pf} \cdot z^{u} = 199 \cdot 0,0940 = 18,7 \text{ kNm}$

mit
$$z^{o} = z \cdot \frac{V^{o}}{V^{o} + V^{u}} = 0,4597 \cdot \frac{210}{210 + 54} = 0,3657 \text{m}$$

 $z^{u} = z \cdot \frac{V^{u}}{V^{o} + V^{u}} = 0,4597 \cdot \frac{54}{210 + 54} = 0,0940 \text{m}$ (siehe Bild 16)

⇒ gewählt: 2 Steifen 80x14 je Seite:

$$M_{\text{pl,Steifen}} = W_{\text{pl}} \cdot \frac{f_{\text{y,d}}}{\gamma_{\text{M1}}} = 417 \cdot \frac{21,36}{1,1} = \underline{80.9 \text{ kNm}} > M^{\circ} = \underline{72,8 \text{ kNm}}$$

mit grenz c/t =
$$9 \cdot \varepsilon = \underline{9,0}$$
 > vorh c/t = $80/14 = \underline{5,7}$ \Rightarrow Die Querschnittstragfähigkeit kann vollplastisch ausgenutzt werden.

Auf Grund des geringen Abstandes a zwischen den beiden Ausschnitten muß ein neuer Nachweis des lokalen Horizontalschubs geführt werden, da rechnerisch weniger Kopfbolzen angesetzt werden können: $n_{l,neu} = 4$ \Rightarrow

$$n_{l,neu} \cdot P_{Rd} = 4 \cdot 73,6 = 294 \text{ kN} < \text{vorh } V_{L,l} = 360 \text{ kN}$$

Zur Verringerung des lokalen Horizontalschubs muß die Biegetragfähigkeit an der Stelle ② abgemindert werden:

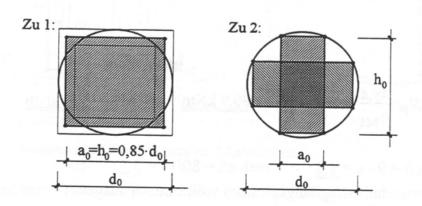
$$\max_{N_{c,l}} N_{c,l} = n_{l,neu} \cdot P_{Rd} + N_l = 294 + 34 = 328kN$$

$$x_{pl} = \frac{328}{31,15 \cdot 1,42} = 7,4cm$$

$$z = 14 + 1,35/2 - 7,4/2 = 11,0cm$$

$$M^{\odot}_{pl,N,V} = 328 \cdot 0,11 = 36,1 \text{ kNm}$$

Damit ergibt sich eine reduzierte Tragfähgikeit am linken Stegausschnitt:


$$V = \frac{0.9 \cdot (4.3 + 36.1 + 7.3 + 2.3)}{0.20} = 225.0 \text{kN}$$

Dies entspricht einer Streckenlast im Gebrauchszustand von q = 29,3 kN/m.

6.7 Runde Stegausschnitte

Runde Stegausschnitte werden näherungsweise genauso behandelt wie rechteckige, obgleich das Tragverhalten bei kleineren runden Öffnungen ganz anders ist als bei großen rechteckigen. Anstelle eines Rahmenträgers im Bereich von rechteckigen Ausschnitten stellt sich bei runden eher ein Fachwerk ein. Der Nachweis von runden Stegausschnitten mit dem Rechenmodell nach Abschnitt 3.3 liefert jedoch gute Ergebnisse. Runde Stegausschnitte können wie folgt nachgewiesen werden:

- 1. Annäherung an die runde Ausschnittsform durch ein Quadrat, dessen Kantenlänge zwischen derjenigen eines ein- und eines umbeschriebenen Quadrates liegt: $a_0 = h_0 = 0.85 \cdot d_0$, oder
- etwas günstiger durch ein einbeschriebenes Achteck. Hieraus ergeben sich zwei Ausschnitte mit unterschiedlichen Abmessungen, die beide nachgewiesen werden müssen.

7. Zusätzliche statische Nachweise und Hinweise auf die konstruktive Ausbildung

Hinweise auf Normen, Vorschriften und Richtlinien:

- Eurocode 4 [1]
- Eurocode 2 [2] (Nur in Bezug auf die Querkrafttragfähigkeit von Betonplatten)
- DIN 1055: Lastannahmen f

 ür Bauten (7/1978)
- DASt-Richtlinie 015 [15] (Nur in bezug auf Kapitel 5: Mehrere Ausschnitte)

Werkstoffe:

- Beton: Festigkeitsklasse B 25 bis B 55 (C 20/25 bis C 35/45)
- Profilstahl: St 37 und St 52 bzw. Fe 360, Fe 430 und Fe 510
- Betonstahl: Stabstahl BSt 500 S (IV S)
- Verbundmittel: Kopfbolzendübel St 37-3 K, Ø 19 und 22 mm

Belastung:

- Die Bemessung gilt f
 ür vorwiegend ruhende Belastung.
- Werden Ausschnitte in Trägern, die nicht ruhend belastet sind, angeordnet, so sind die Ränder i.a. zu versteifen. Der Betriebsfestigkeitsnachweis kann dann z.B. mit dem örtlichen Konzept unter Verwendung von FEM-Programmen zur genauen Spannungsberechnung geführt werden.
- Direkt über dem Ausschnitt (Länge a₀) sowie rechts und links der Ausschnittsränder im Abstand der zweifachen Höhe (2·h₀) sollten keine konzentrierten
 Einzellasten angreifen. Dieser Mindestabstand sollte eingehalten werden, da
 über geringere Abstände keine Versuchserfahrungen vorliegen.
- Die für den Stegausschnitt maßgebenden Schnittgrößen ergeben sich beim Einfeldträger u.U. nicht nur aus der Vollbelastung, sondern eventuell aus der einseitigen Belastung, da die Querkraft in Feldmitte dann nicht mehr Null ist.

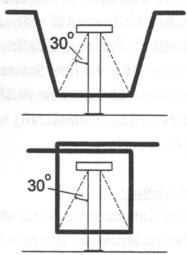
Nachweise:

- Die Teilsicherheitsbeiwerte sind entsprechend Eurocode 4 [1] anzusetzen.
- Der Nachweis im Bereich des Stegausschnittes erfolgt im Grenzzustand der Tragfähigkeit.
- Er ist nur für den Ausschnittsbereich gültig. Alle anderen für Verbundträger erforderlichen Nachweise müssen zusätzlich geführt werden.
- Die Überprüfung der b/t-Verhältnisse für eine plastische Bemessung erfolgt
 - nach Eurocode 4 [1] für Verbundquerschnitte und
 - nach Eurocode 3 oder DIN 18800 [5] für reine Stahlbereiche.

- Die Berechnung der Biegetragfähigkeiten an den Stellen ① bis ④ (siehe Bild
 8) erfolgt unter Annahme einer vollplastischen Spannungsverteilung.
- Zur Berücksichtigung bestimmter ungünstig wirkender Einflüsse (Dehnungsbegrenzung am Rand von Betonquerschnitten, Rißbildung, Rechenmodell) sollte beim Nachweis der Tragfähigkeit an den Stellen ① bis ④ die Summe der plastischen Biegetragfähigkeiten nur zu 90% ausgenutzt werden (vgl. [1] bzw. [6]).

$$V \cdot a_0 \leq 0.9 \cdot \sum_{i=1}^{4} M^{\scriptsize \textcircled{\tiny 1}}_{pl,N,V}$$

 Die gleichzeitig vorhandene Querkraft kann bei der Berechnung der Biegetragfähigkeiten an den Stellen ① bis ④ (im Unterschied zu den Regelungen des Eurocode 4) durch die Reduktion der Stegdicke berücksichtigt werden (das führt zu nur geringen Abweichungen im Ergebnis):


$$s_{red} = s \cdot \sqrt{1 - \left(\frac{V}{V_{pl}}\right)^2}$$

- Ist der Verbundträger durch ein globales, negatives Biegemoment beansprucht,
 so
 - ist für den unteren Teilquerschnitt (Stelle ③/④) zusätzlich der Stabilitätsnachweis (Knicken, Biegedrillknicken) zu führen. Das ergibt gegebenenfalls die Notwendigkeit, Vertikalsteifen anzuordnen (Gabellagerung, Einspannung), die wegen der Durchstanzgefahr oben an der Stelle ① möglichst nicht eingepaßt werden sollten;
 - kann der Beitrag der Betonplatte zur Aufnahme der Querkraft i.a. vernachlässigt werden.

Verbundmittel:

- Die Berechnung der Tragfähigkeit der Kopfbolzendübel auf Schub erfolgt nach dem Eurocode 4 [1] unter Beachtung des nationalen Anwendungsdokuments [23].
- Aufgrund der Auflagertiefe der Restquerschnitte im ungeschwächten Verbundquerschnitt können mehr Kopfbolzen bei der lokalen Schubabtragung mitwirken, als direkt über dem Ausschnitt vorhanden sind (siehe [8]). Wegen der unterschiedlichen Steifigkeit des Betongurts unterscheidet sich die Auflagertiefe
 und somit die Dübelanzahl bei positiver bzw. negativer (globaler) Momentenbeanspruchung. Bei den in den Versuchen gewählten, äquidistanten Dübelabständen von ca. 15 cm konnten als maximale Dübelanzahl n₁ angesetzt werden:

- bei positiver Momentenbeanspruchung: $n_1 = a_0/e_1 + 4$, - bei negativer " : $n_1 = a_0/e_1 + 2$.
- Wird der Schub V_c in der Betonplatte in Rechnung gestellt, so sollten Kopfbolzen an der Stelle ② angeordnet werden, die über Zug diese Kraft V_c in die Betonplatte einleiten (siehe Bild 2). Da die Interaktion Schub-Zug nicht abschließend geregelt ist, sollten die Kopfbolzen für Zug zusätzlich angeordnet werden. Die Zugtragfähigkeiten könnten bei Vollplatten nach [14] und bei Holoribplatten nach [24] berechnet werden.
- Da die Zugtragfähigkeit der Kopfbolzen mit deren Länge zunimmt, sollten sie möglichst lang sein. Sie sollten mindestens so lang gewählt werden, daß sie in der lastabgewandten Seite der Platte verankert werden können (vgl. dazu z.B. Zulassungsbescheid für Nelson-Kopfbolzen). Am zuverlässigsten ist die kombinierte Verwendung von Kopfbolzen und Schlaufen (siehe die Bilder rechts).

Querkrafttragfähigkeit:

 Sowohl der Reststahlsteg als auch die Betonplatte stehen zur Querkraftaufnahme zur Verfügung. Schubbewehrung, die innerhalb der lokal mitwirkenden Plattenbreite b_{m,1} angeordnet ist, darf rechnerisch mit herangezogen werden.

Stegausschnitt:

Die Abmessungen des Stegausschnittes sind gemäß den folgenden Bedingungen, die die Grenzen des experimentell untersuchten Bereiches repräsentieren, zu begrenzen:

$$h_0 \leq 0.8 \cdot h_a$$

$$a_0 \leq 3,0 \cdot h_0$$

Liegt die Öffnungsgröße im Bereich der Grenzabmessungen, so ist mit beträchtlichen Tragfähigkeitsverlusten gegenüber dem Träger ohne Stegausschnitte zu rechnen.

- Die Ecken von rechteckigen Stegausschnitten sind auszurunden. Der minimale Ausrundungsradius beträgt 30 mm.
- Es können auch mehrere Ausschnitte hintereinander angeordnet werden. Wenn keine Wechselwirkungen zwischen mehreren Ausschnitten berücksichtigt werden soll, sollte der Abstand zwischen den Rändern zweier benachbarter Aus-

- schnitte mindestens gleich der zweifachen Höhe $(2 \cdot h_0)$ sein (in Anlehnung an [15]).
- Der Abstand zwischen zwei Ausschnitten kann verringert werden, wenn diese vertikal versteift werden. Wie in [15] dargestellt, ist der Restquerschnitt zwischen den Ausschnitten dann wie für einen Pfosten nach dem Vierendeel-Modell für die sekundären Biegemomente und die resultierende Schubkraft zu bemessen (vgl. dazu Abschnitt 6.6). Der Pfostenquerschnitt muß so dimensioniert sein, daß die b/t- und c/t-Verhältnisse für die Querschnittsklasse 1 eingehalten sind, wenn er vollplastisch ausgenutzt wird.
- Steifen sollten i.a. möglichst nahe am Rand des Ausschnitts angeordnet werden (siehe Bild 9). Ihre Schweißnähte entlang der Flanken sind auf Schub zu bemessen. Horizontale Steifen sind ausreichend vorzubinden (Einleitung der plastischen Normalkraft) und an den Enden zur Minderung der Kerbspannungen abzuflachen.

Kammerbeton:

- Der Kammerbeton verhindert das Beulen des Steges (vgl. [1]).
- Bei rechteckigen Stegausschnitten sollten zusätzlich horizontale Steifen vorgesehen werden, um örtliches Betonversagen an den Stellen ③ und ④ (plastische
 Gelenke mit großen Verformungen) zu verhindern. Andernfalls ist elastisch mit
 Dehnungsbegrenzung zu bemessen, oder der Kammerbeton bleibt rechnerisch
 unberücksichtigt.

Weitere konstruktive Hinweise:

- Je höher die Öffnung im Stahlträger angeordnet ist, desto größer ist im allgemeinen die Tragfähigkeit im Bereich des Stegausschnittes (siehe [6]). Die exzentrisch nach oben verschobene Öffnung hat weiterhin den Vorteil, daß dann i.a. die c/t-Verhältnisse des oberen Reststeges leichter eingehalten werden können.
- Zur Vermeidung einer frühzeitigen Rißbildung sollte über dem Ausschnitt im Betongurt eine ausreichende Längs- und Querbewehrung vorgesehen werden, und zwar insbesondere an der Stelle ①, also dort, wo sich das lokale negative Biegemoment bildet.
- Folgende Verstärkungsmaßnahmen wirken sich günstig auf die Tragfähigkeit aus:
 - horizontale Steifen (siehe Bild 9 auf Seite 20),
 - vertikale Steifen (Verhinderung des Beulens, Gabellagerung gegen Biegedrillknicken),

- höherer Längsbewehrungsgrad,
- stärkere Verdübelung (falls maßgebend),
- längere Dübel (falls maßgebend),
- dickerer Aufbeton.
- Werden statt Betonplatten mit unterbrochener Verbundfuge Vollplatten angeordnet, so wirkt sich dies ebenfalls günstig auf die Tragfähigkeit aus, da dann die gesamte Dicke der Platte in Rechnung gestellt werden kann.
- Grundsätzlich sollte bei allen unversteiften Öffnungen ein Stabilitätsnachweis
 geführt werden. Dieser kann in vielen Fällen über die Mindestdicken (b/t-Verhältnisse) geführt werden. Bei dünnen Blechen darf gegebenenfalls nicht mit
 der vollen Momentenumlagerung gerechnet werden und die Bemessung der
 Restquerschnitte kann nicht mehr vollplastisch durchgeführt werden.

8. Normen und Literatur

- [1] DIN V ENV 1994 Teil 1-1, Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton, Teil 1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau (2/1994)
- [2] DIN V ENV 1992 Teil 1-1, Eurocode 2: Planung von Stahlbeton- und Spannbetontragwerken, Teil 1: Grundlagen und Anwendungsregeln für den Hochbau (6/1992)
- [3] Eurocode No. 3 Part 1.1, Annex N Opening in webs. Final draft (3/1994)
- [4] Richtlinien für die Bemessung und Ausführung von Stahlverbundträgern. (3/1981)
- [5] DIN 18800 Teil 1-3: Stahlbauten (11/1990)
- [6] * Bode, H., Stengel, J.: Verstärkte Stahlverbundträger für den Industriebau mit großen Stegöffnungen. Schlußbericht zum AiF-Forschungsvorhaben Nr. 8173, Universität Kaiserslautern, Fachgebiet Stahlbau (7/1993)
- [7] Bode, H., Künzel, R.: Stahlverbundträger mit großen Stegöffnungen. Abschlußbericht zum DFG-Forschungsvorhaben Bo 733/6-1, Universität Kaiserslautern, Fachgebiet Stahlbau (1991)
- [8] Bode, H., Stengel, J., Künzel, R.: Stahlverbundträger mit großen Stegausschnitten. Stahlbau Heft 1 und 2 (1994)
- [9] Darwin, D., Donahey, R. C.: Performance and Design of Composite Beams with Web Openings. AISC Research Project 21.82. Structural Engineering and Engineering Materials, SM Report No. 18 (1986)
- [10] Darwin, D.: Steel and Composite Beams with Web Openings. Steel Design Guide Series 2, AISC (1989)
- [11] Lawson, R. M.: Design for Openings in the Webs of Composite Beams. SCI Publication 068 (1987)
- [12] Lange, J., Kurz, W.: Verbundträger mit unausgesteiften Stegausschnitten. Stahlbau 59, S. 123-125 (4/1990)
- [13] Bode, H., Hanenkamp, W.: Zur Tragfähigkeit von Kopfbolzen bei Zugbeanspruchung. Bauingenieur 60 (1985)
- [14] Eligehausen, R.: Tragverhalten von Kopfbolzenverankerungen bei zentrischer Zugbeanspruchung. Bauingenieur 67, S. 183-196 (1992)
- [15] DASt-Richtlinie 015: Träger mit schlanken Stegen (1990)
- [16] Sahmel, P.: Konstruktive Ausbildung und Näherungsberechnung geschweißter Biegeträger und Torsionsstäbe mit großen Stegausnehmungen. Schweißen und Schneiden, S. 116-122 (3/1969)

Normen und Literatur

- [17] Schories, K.: Berechnung schlanker Stegbleche mit rechteckigen Öffnungen. Stahlbau, S. 26-28 (1/1986)
- [18] Schories, K.: Berechnung schlanker Stegbleche mit rechteckigen und ausmittigen Öffnungen. Stahlbau Heft 1 und 7 (1986)
- [19] Bode, H.: Stub-Girder cut steel use die neue Bauweise? Kurzbericht, Der Bauingenieur 56 (1981)
- [20] Bode, H.: Schubtragfähigkeit des Stub-Girder Systems. Stahlbau 55 (1986)
- [21] Kanning, W.: Merkblatt Nr. 361 der Beratungsstelle für Stahlanwendung: Wabenträger.
- [22] Stahl-Informations-Zentrum: Brandschutztechnische Konstruktion und Bemessung von Stahlverbundbauteilen. Merkblatt 117, 1. Auflage (1991)
- [23] DASt-Richtlinie 104: Anwendungsrichtlinie für den Eurocode 4 (2/1994)
- Bode, H., Künzel, R.: Zur Traglast von Verbundträgern unter besonderer Berücksichtigung einer nachgiebigen Verdübelung. Abschlußbericht zum DFG-Forschungsvorhaben Bo 733/3-2, Universität Kaiserslautern, Fachgebiet Stahlbau (1988)

Verlag und Vertriebsgesellschaft mbH, Postfach 105127, 40042 Düsseldorf, Faxnr. 0211 /829-518

^{*} Das Forschungsprojekt P197 wurde im Auftrag der Studiengesellschaft Stahlanwendung e.V., Düsseldorf, durchgeführt. Der Forschungsbericht umfaßt 210 Seiten und enthält 278 Abbildungen/Tabellen. Gegen eine Schutzgebühr in Höhe von DM 50,- kann der Bericht bestellt werden.

9. Schluß

Bei Geschoßdecken in Stahlverbundbauweise läßt sich die horizontale Leitungsführung durch die Anordnung von Stegausschnitten in den Decken- und/oder Hauptträgern optimieren. Dadurch werden jedoch statische Zusatznachweise erforderlich. Sie sind Teil dieser Technischen Dokumentation.

Auf der Grundlage von Ergebnissen aus mehreren Forschungsprojekten wurde ein auf der Stabwerkstheorie basierendes Rechenmodell entwickelt, mit dem sich die Versagensart und die Tragfähigkeit von Verbundträgern mit Stegausschnitten berechnen läßt. Mit diesem Modell wurden auf der Grundlage des Eurocode 4 Diagramme erstellt. Sie ermöglichen im Rahmen eines definierten Parameterbereiches (vgl. Seite 19) eine schnelle Vorbemessung und geben für alle M/V-Verhältnisse die Biege- und Querkrafttragfähigkeiten in Ausschnittsmitte an.

Die Vorbemessung kann auch mit Hilfe der Tabellen durchgeführt werden. Sie geben zwar nur für drei verschiedene Beanspruchungskombinationen die Tragfähigkeiten wieder, gestatten jedoch eine gezielte Verstärkung des Ausschnittes, da die entsprechende rechnerische Versagensart angegeben wird.

Die ausführliche Berechnung von Hand, die in allen Einzelschritten dargestellt ist, beinhaltet sowohl wichtige konstruktive Regeln als auch die zusätzlich erforderlichen statischen Nachweise.

BAUEN MIT STAHL e.V.

Sohnstraße 65 ● 40237 Düsseldorf Postfach 10 48 42 ● 40039 Düsseldorf Telefon (0211) 6707-828 Telefax (0211) 6707-829 Internet www.bauen-mit-stahl.de E-mail zentrale@bauen-mit-stahl.de